access icon free Dynamical modelling and emulation of Li-ion batteries–supercapacitors hybrid power supply for electric vehicle applications

Modelling dynamic behaviours of the lithium-ion (Li-ion) battery and supercapacitor in electric vehicle applications is a key aspect for the emulation of the hybrid power supply. In this study, a dynamical model based on two non-linear equivalent circuits is developed to describe the characteristics of the battery and supercapacitor during both steady-state and transient conditions. The necessary parameters for the proposed model are extracted from measurement data in time and frequency domain using an optimisation algorithm. The developed model is coupled to power electronics devices fed by DC power supply to carry out a laboratory emulator of the hybrid power supply. This tool is mainly used for testing and verification of the electric vehicle performances with convenient and reproducible way. The proposed emulator avoids time-consuming preconditioning and safety problems generally caused by the misuse of electrochemical components such as the Li-ion battery. The modelling and experimental results show a good performance of the hybrid power supply emulator and confirm their feasibility over a wide range of operating points.

Inspec keywords: secondary cells; optimisation; power electronics; equivalent circuits; time-frequency analysis; electric vehicles; hybrid power systems; supercapacitors; lithium compounds; power supply circuits

Other keywords: electrochemical components misuse; power electronics device; optimisation algorithm; electric vehicle application; dynamical modelling; safety problem; transient condition; time-frequency domain; steady-state condition; DC power supply; time-consuming preconditioning problem; nonlinear equivalent circuit; lithium-ion battery-supercapacitor hybrid power supply emulation

Subjects: Mathematical analysis; Other power apparatus and electric machines; Secondary cells; Transportation; Other energy storage; Optimisation techniques

References

    1. 1)
      • 2. Miee, N.S., Miee, H.T.Y., Mieee, C.M.B.: ‘Hybrid Energy Sources for Electric and Fuel Cell Vehicle Propulsion.’, 2005 IEEE Vehicle Power and Propulsion Conference (VPPC), 2005, pp. 4249.
    2. 2)
      • 1. Kelouwani, S., Agbossou, K., Dubé, Y., et al: ‘Fuel cell plug-in hybrid electric vehicle anticipatory and real-time blended-mode energy management for battery life preservation’, J. Power Sources, 2013, 221, pp. 406418.
    3. 3)
      • 21. Yu, Z., Zinger, D., Bose, A.: ‘An innovative optimal power allocation strategy for fuel cell, battery and supercapacitor hybrid electric vehicle’, J. Power Sources, 2011, 196, (4), pp. 23512359.
    4. 4)
      • 19. Choi, M.-E., Kim, S.-W., Seo, S.-W.: ‘Energy management optimization in a battery/supercapacitor hybrid energy storage system’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 463472.
    5. 5)
      • 25. Linzen, D., Buller, S., Karden, E., et al: ‘Analysis and evaluation of charge-balancing circuits on performance, reliability, and lifetime of supercapacitor systems’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 11351141.
    6. 6)
      • 29. Bilbao, E., Barrade, P., Etxeberria-otadui, I., et al: ‘Optimal energy management strategy of an improved elevator with energy storage capacity’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 12331244.
    7. 7)
      • 44. Waag, W., Käbitz, S., Sauer, D.U.: ‘Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application’, Appl. Energy, 2013, 102, (null), pp. 885897.
    8. 8)
      • 41. Rizoug, N., Bartholomeus, P., Le Moigne, P.: ‘Study of the ageing process of a supercapacitor module using direct method of characterization’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 220228.
    9. 9)
      • 16. Camara, M.B., Gualous, H., Gustin, F., et al: ‘DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications – polynomial control strategy’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 587597.
    10. 10)
      • 46. Sadoun, R., Rizoug, N., Bartholumeus, P., et al: ‘Sizing of hybrid supply (battery-supercapacitor) for electric vehicle taking into account the weight of the additional buck–boost chopper’. 2012 First Int. Conf. Renewable Energies Vehicular Technology, March 2012, vol. 2, no. 1, pp. 814.
    11. 11)
      • 37. Einhorn, M., Conte, F.V., Kral, C., et al: ‘Comparison, selection, and parameterization of electrical battery models for automotive applications’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 14291437.
    12. 12)
      • 38. Mesbahi, T., Khenfri, F., Rizoug, N., et al: ‘Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid particle swarm–Nelder–Mead (PSO–NM) optimization algorithm’, Electr. Power Syst. Res., 2016, 131, pp. 195204.
    13. 13)
      • 43. Dai, H., Zhang, X., Wei, X., et al: ‘Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles’, Int. J. Electr. Power Energy Syst., 2013, 52, pp. 174184.
    14. 14)
      • 15. Guidi, G., Undeland, T.M., Hori, Y.: ‘Effectiveness of supercapacitors as power-assist in pure EV using a sodium–nickel chloride battery as main energy storage’. EVS24 Int. Battery, Hybrid and Fuel Cell Electric Vehicle Symp., 2009, pp. 19.
    15. 15)
      • 14. Oliver, K., Jakubek, S.: ‘Model predictive control of a battery emulator for testing of hybrid and electric powertrains’, 2011, no. iii.
    16. 16)
      • 47. ‘Bolloré Bluecar’, 2015. Available at http://www.bluecar.fr.
    17. 17)
      • 3. Araujo, R.E., de Castro, R., Pinto, C., et al: ‘Combined sizing and energy management in EVs with batteries and supercapacitors’, IEEE Trans. Veh. Technol., 2014, 63, (7), pp. 30623076.
    18. 18)
      • 24. ‘Kokam Li-ion batteries’. Available at http://www.kokam.com/.
    19. 19)
      • 30. Mesbahi, T., Rizoug, N., Bartholomeüs, P., et al: ‘A new energy management strategy of a battery/supercapacitor hybrid energy storage system for electric vehicular applications’. Seventh IET Int. Conf. Power Electronics Machines and Drives, 2014, pp. 17.
    20. 20)
      • 32. Sadoun, R., Rizoug, N., Bartholomeus, P., et al: ‘Optimal sizing of hybrid supply for electric vehicle using Li-ion battery and supercapacitor’. 2011 IEEE Vehicle Power and Propulsion Conf., 2011, pp. 18.
    21. 21)
      • 6. Thounthong, P., Pierfederici, S., Martin, J.-P., et al: ‘Modeling and control of fuel cell/supercapacitor hybrid source based on differential flatness control’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 27002710.
    22. 22)
      • 11. Thanheiser, A., Kohler, T.P., Bertram, C., et al: ‘Battery emulation considering thermal behavior’. 2011 IEEE Vehicle Power and Propulsion Conf., September 2011, pp. 15.
    23. 23)
      • 34. Chen, M., Rincon-Mora, G.A.: ‘Accurate electrical battery model capable of predicting runtime and I–V performance’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 504511.
    24. 24)
      • 28. ‘Maxwell technologies D cell series ultracapacitors board mounted cells’, 2015. Available at http://www.maxwell.com/products/ultracapacitors/d-cell-series/documents.
    25. 25)
      • 42. Knauff, M., Niebur, D., Nwankpa, C.: ‘A platform for the testing and validation of dynamic battery models’. 2009 IEEE Electric Ship Technologies Symp., April 2009, pp. 554559.
    26. 26)
      • 18. Amjadi, Z., Williamson, S.S.: ‘Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 608616.
    27. 27)
      • 8. Liu, F., Liu, J., Zhou, L.: ‘A novel control strategy for hybrid energy storage system to relieve battery stress’. The Second Int. Symp. on Power Electronics for Distributed Generation Systems, 2010, pp. 929934.
    28. 28)
      • 39. Manla, E., Mandic, G., Nasiri, A.: ‘Testing and modeling of lithium-ion ultracapacitors’. 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 29572962.
    29. 29)
      • 13. Konig, O., Hametner, C., Prochart, G., et al: ‘Battery emulation for power-HIL using local model networks and robust impedance control’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 943955.
    30. 30)
      • 23. Sadoun, R.: ‘Intérêt d'une source d'energie electrique hybride pour véhicule électrique urbain – dimensionnement et tests de cyclage’, PhD thesis, Ecole Centrale de Lille, 2013, <NNT: 2013ECLI0009>. <TEL-00980484>.
    31. 31)
      • 17. Wang, G., Yang, P., Zhang, J.: ‘Fuzzy optimal control and simulation of battery-ultracapacitor dual-energy source storage system for pure electric vehicle’. 2010 Int. Conf. Intelligent Control and Information Processing, August 2010, pp. 555560.
    32. 32)
      • 9. Schaltz, E., Khaligh, A., Rasmussen, P.O.: ‘Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle’, IEEE Trans. Veh. Technol., 2009, 58, (8), pp. 38823891.
    33. 33)
      • 27. Kankanamge, K., Kularatna, N.: ‘Improving the end-to-end efficiency of DC–DC converters based on a supercapacitor-assisted low-dropout regulator technique’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 223230.
    34. 34)
      • 33. Riu, D., Retiere, N., Linzen, D.: ‘Half-order modelling of supercapacitors’. Conf. Record of the 2004 IEEE Industry Applications Conf., 2004. 39th IAS Annual Meeting, 2004, vol. 4, no. 2, pp. 25502554.
    35. 35)
      • 4. Romaus, C., Böcker, J.: ‘Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors’. 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 16401647.
    36. 36)
      • 45. Mesbahi, T., Rizoug, N., Bartholomeus, P., et al: ‘Li-ion battery emulator for electric vehicle applications’. 2013 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2013, pp. 18.
    37. 37)
      • 26. Thounthong, P., Raël, S., Davat, B.: ‘Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications’, J. Power Sources, 2009, 193, (1), pp. 376385.
    38. 38)
      • 10. Moura, S.J., Forman, J.C., Bashash, S., et al: ‘Optimal control of film growth in lithium-ion battery packs via relay switches’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 35553566.
    39. 39)
      • 22. Xiong, R., He, H., Guo, H., et al: ‘Modeling for lithium-ion battery used in electric vehicles’, Procedia Eng., 2011, 15, pp. 28692874.
    40. 40)
      • 36. Rizoug, N., Bartholomeus, P., Le Moigne, P.: ‘Modeling and characterizing supercapacitors using an online method’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 39803990.
    41. 41)
      • 31. Vinot, E., Trigui, R.: ‘Optimal energy management of HEVs with hybrid storage system’, Energy Convers. Manage., 2013, 76, pp. 437452.
    42. 42)
      • 5. Allegre, A.L., Trigui, R., Bouscayrol, A.: ‘Different energy management strategies of hybrid energy storage system (HESS) using batteries and supercapacitors for vehicular applications’. IEEE Vehicle Power and Propulsion Conf., 2010, pp. 16.
    43. 43)
      • 12. Chou, P.H.: ‘B#: a battery emulator and power profiling instrument’. Proc. 2003 Int. Symp. Low Power Electronics and Design 2003 ISLPED ’03, 2003, pp. 288293.
    44. 44)
      • 7. Mesbahi, T., Le Moigne, P., Bartholomes, P., et al: ‘Improved model of battery/supercapacitor hybrid energy storage system based on thermo-electrical and aging behaviors’. Seventh IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2014), 2014, p. 3.3.03.
    45. 45)
      • 40. Dusmez, S., Member, S., Khaligh, A., et al: ‘A supervisory power splitting approach for a new ultracapacitor-battery vehicle deploying two propulsion machines’, IEEE Trans. Ind. Inf., 2014, 10, (3), pp. 19601971.
    46. 46)
      • 35. Bhide, S., Shim, T.: ‘Novel predictive electric li-ion battery model incorporating thermal and rate factor effects’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 819829.
    47. 47)
      • 20. Camara, M.B., Dakyo, B., Gualous, H.: ‘Polynomial control method of DC/DC converters for DC-bus voltage and currents management – battery and supercapacitors’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 14551467.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0040
Loading

Related content

content/journals/10.1049/iet-est.2016.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading