access icon free Multi-stack fuel cell efficiency enhancement based on thermal management

Automotive manufacturers face serious difficulties concerning the expected fossil fuel depletion and the emitted pollutants during combustion. The fuel cell (FC) vehicle is considered a promising solution for greener and sustainable transportation. The integration of FC in vehicles is limited by some technological constraints and technical barriers which can be partially met by splitting the power and energy into different ‘downsized’ FCs named multi-stack FCs. This study aims at proposing a multi-stack FC configuration for electric vehicles (EVs) to minimise its start-up time, heating/cooling and cycling problems. To properly reach such desired operating conditions, a novel thermal management technique is proposed. Using the modularity provided by multi-stack solution, each FC is activated depending on the FCs temperature and the required vehicle power. Simulation results, using MTCSim© software, demonstrate the capability of the proposed thermal management approach to effectively enhance the EV's multi-stack FC's life span, cycling and efficiency, besides optimising its operation performance.

Inspec keywords: power engineering computing; thermal management (packaging); fuel cell vehicles; energy conservation; automotive engineering

Other keywords: technical barriers; expected fossil fuel depletion; heating problem; multistack fuel cell efficiency enhancement; electric vehicles; novel thermal management technique; cycling problem; start-up time minimisation; combustion; emitted pollutants; technological constraints; sustainable transportation; MTCSim software; fuel cell vehicle; cooling problem

Subjects: Energy conservation; Civil and mechanical engineering computing; Power engineering computing; Transportation; General transportation (energy utilisation)

References

    1. 1)
      • 4. Olivier, J.G.I., Peters, J.A.H.W., Janssens-Maenhout, G.: ‘Trends in global CO2 emissions 2012 report’ (PBL Netherlands Environmental Assessment Agency, 2012).
    2. 2)
      • 18. Chan, C.C., Bouscayrol, A., Chen, K.: ‘Electric, hybrid and fuel-cell vehicles: architectures and modeling’, Trans. Veh. Technol., 2010, 59, (2), pp. 589598.
    3. 3)
      • 5. Noor, S., Siddiqi, M.W.: ‘Energy consumption and economic growth in south Asian countries: a co-integrated panel analysis’, Proc. World Acad. Sci. Eng. Technol., 2010, 67, pp. 251256.
    4. 4)
      • 16. Sundström, O., Stefanopoulou, A.: ‘Optimal power split in fuel cell hybrid electric vehicle with different battery sizes, drive cycles, and objectives’. Proc. of the IEEE Int. Conf. on Control Applications, art. no. 4776894, 2006, pp. 16811688.
    5. 5)
      • 15. Kim, M.-J., Peng, H.: ‘Power management and design optimization of fuel cell/battery hybrid vehicles’, J. Power Sources, 2007, 165, (2), pp. 819832.
    6. 6)
      • 22. Xu, J., Yao, L., Lu, Y.: ‘Innovative approaches towards low carbon economics’ (SPRINGER, Berlin Heidelberg, 2015).
    7. 7)
      • 20. Marx, N., Boulon, L., Gustin, F., et al: ‘A review of multi-stack and modular fuel cell systems: interests, application areas and on-going research activities’, Int. J. Hydrog. Energy, 2014, 39, (23), pp. 1210112111.
    8. 8)
      • 1. Key figures on climate France and worldwide, 2016 edition’. Available at www.statistiques.developpement-durable.gouv.fr.
    9. 9)
      • 17. Sorrentino, M., Pianese, C., Maiorino, M.: ‘An integrated mathematical tool aimed at developing highly performing and cost-effective fuel cell hybrid vehicles’, J. Power Sources, 2013, 221, pp. 308317.
    10. 10)
      • 12. Ettihir, K., Boulon, L., Becherif, M., et al: ‘Online identification of semi-empirical model parameters for PEMFCs’, Int. J. Hydrog. Energy, 2014, 39, (36), pp. 2116521176.
    11. 11)
      • 25. Lin, P., Park, B.Y., Madou, M.J.: ‘Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates’, J. Power Sources, 2008, 176, (1), pp. 207214.
    12. 12)
      • 2. European Energy Agency (EEA), Report June 2014’. Available at www.eea.europa.eu.
    13. 13)
      • 7. Becherif, M., Claude, F., Hervier, T., et al: ‘Multi-stack fuel cells powering a vehicle’. Int. Conf. on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15, Lebanon, 2015.
    14. 14)
      • 14. Boulon, L., Agbossou, K., Hissel, D., et al: ‘A macroscopic PEM fuel cell model including water phenomena for vehicle simulation’, Renew. Energy, 2012, 46, pp. 8191.
    15. 15)
      • 6. Mazloomi, K., Gomes, C.: ‘Hydrogen as an energy carrier: prospects and challenges’, Renew. Sustain. Energy Rev., 2012, 16, pp. 30243033.
    16. 16)
      • 8. Zheng, Z., Péra, M.C., Hissel, D., et al: ‘A double-fuzzy diagnostic methodology dedicated to online fault diagnosis of PEMFC stack’, J. Power Sources, 2014, 271, pp. 570581.
    17. 17)
      • 9. Jouin, M., Gouriveau, R., Hissel, D., et al: ‘Prognostics and Health Management of PEMFC – state of the art and remaining challenges’, Int. J. Hydrog. Energy, 2013, 38, (35), pp. 1530715317.
    18. 18)
      • 3. Ministry of the Ecology, Sustainable Development and Energy (MEDDE): ‘Key figures on climate: France and Worldwide’. Edition 2015; ISSN:2115-7634.
    19. 19)
      • 21. Chen, S.X., Gooi, H.B., Xia, N., et al: ‘Modelling of lithium-ion battery for online energy management systems’, IET Electr. Syst. Transp., 2012, 12, pp. 202210.
    20. 20)
      • 19. Becherif, M., Hissel, D., Gaagat, S.: ‘Electrical equivalent model of a proton exchange membrane fuel cell with experimental validation’, Renew. Energy, 2011, 36, (10), pp. 25822588.
    21. 21)
      • 13. Saadi, R., Bahri, M., Ayad, M.Y., et al: ‘Dual loop control of fuel cell source using nonisolated IBC-IDDB converter for hybrid vehicle applications’, Energy Procedia, 2014, 50, pp. 155162.
    22. 22)
      • 24. Aung, H., Low, K.: ‘Temperature dependent state of charge estimation of lithium ion battery using dual spherical unscented Kalman filter’, IET Power Electron., 2015, 8, pp. 20262033.
    23. 23)
      • 23. Liu, D., Liu, X., Zhu, Z., et al: ‘LiFePO4 battery capacity prediction based on support vector machineProc. of the Int. Conf. on Automatic Control and Artificial Intelligence (ACAI 2012), 2012, pp. 13021305.
    24. 24)
      • 10. Cadet, C., Jemeï, S., Druart, F., et al: ‘Diagnostic tools for PEMFCs: from conception to implementation’, Int. J. Hydrog. Energy, 2014, 39, (20), pp. 1061310626.
    25. 25)
      • 11. Onanena, R., Oukhellou, L., Candusso, D., et al: ‘Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time’, Int. J. Hydrog. Energy, 2011, 36, (2), pp. 17301739.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0027
Loading

Related content

content/journals/10.1049/iet-est.2016.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading