access icon free Fault mechanism study on Li-ion battery at over-discharge and its diagnosis approach

A detailed research on fault mechanism of lithium (Li)-ion battery at over-discharge condition is reported in this study. Cells were cycled with different depths of discharge and reference performance tests were performed to extract parameters in dynamic and equilibrium conditions. The over-discharge process indicates that the abrupt change of temperature and impedance can be used for fault predication, while the parameter variations from federal urban driving schedule test can clearly identify the fault mode. Curves from incremental capacity analysis suggest loss of active material at negative electrode (LAMNE) as well as Li inventory loss may dominate the over-discharge process. Finally, post-mortem examination was carried out to validate authors’ mechanism deduction and diagnosis approach. The proposed approach is suitable for over-discharge diagnosis and predication in electric vehicle applications.

Inspec keywords: secondary cells; battery powered vehicles

Other keywords: over-discharge process; incremental capacity analysis; federal urban driving schedule; post-mortem examination; electric vehicle; fault mechanism; LAMNE; lithium-ion battery

Subjects: General transportation (energy utilisation); Transportation; Secondary cells; Secondary cells

References

    1. 1)
      • 29. Zheng, Y., Qian, K., Luo, D., et al: ‘Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries’, RSC Adv., 2016, 6, pp. 3047430483.
    2. 2)
      • 32. Hua, C., Youn, B.D., Chung, J.: ‘A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation’, Appl. Energy, 2012, 92, pp. 694704.
    3. 3)
      • 26. Maleki, H., Howard, J.N.: ‘Effects of overdischarge on performance and thermal stability of a Li-ion cell’, J. Power Sources, 2006, 160, pp. 13951402.
    4. 4)
      • 15. Bloom, I., Christophersen, J.P., Abraham, D.P., et al: ‘Differential voltage analyses of high-power lithium-ion cells’, J. Power Sources, 2006, 157, (1), pp. 537542.
    5. 5)
      • 25. Yao, L., Wang, Z., Ma, J.: ‘Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles’, J. Power Sources, 2015, 293, pp. 548561.
    6. 6)
      • 27. Shu, J., Shui, M., Xu, D., et al: ‘A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries’, J. Solid State Electrochem., 2012, 16, pp. 819824.
    7. 7)
      • 35. Dubarry, M., Svoboda, V., Hwu, R., et al: ‘Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries’, Electrochem. Solid-State Lett., 2006, 9, (10), p. A454.
    8. 8)
      • 23. Belov, D., Yang, M. -H.: ‘Investigation of the kinetic mechanism in overcharge process for Li-ion battery’, Solid State Ion., 2008, 179, (27–32), pp. 18161821.
    9. 9)
      • 17. Ouyang, M.G., Ren, D.S., Lu, L.G., et al: ‘Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode’, J. Power Sources, 2015, 279, pp. 626635.
    10. 10)
      • 1. Troltzsch, U., Kanoun, O., Trankler, H.S.: ‘Characterizing aging effects of lithium ion batteries by impedance spectroscopy’, Electrochim. Acta, 2004, 51, pp. 16641672.
    11. 11)
      • 9. Petzl, M., Michael, A.D.: ‘A nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries’, J. Power Sources, 2014, 254, pp. 8087.
    12. 12)
      • 11. Arora, P., Zhang, Z.: ‘Battery separators’, Chem. Rev., 2004, 104, pp. 44194462.
    13. 13)
      • 21. Liu, W.J.: ‘Research and implementation of failure diagnosis expert system for battery pack’. Master dissertation, Hunan University, 2005.
    14. 14)
      • 20. Dubarry, M., Truchot, C., Liaw, B.Y.: ‘Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs’, J. Power Sources, 2014, 258, pp. 408419.
    15. 15)
      • 16. Dubarry, M., Liaw, B.Y., Chen, M.S.: ‘Identifying battery aging mechanisms in large format Li ion cells’, J. Power Sources, 2011, 196, pp. 34203425.
    16. 16)
      • 24. Zhang, L., Ma, Y., Cheng, X.: ‘Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery’, J. Power Sources, 2015, 293, pp. 10061015.
    17. 17)
      • 3. Wang, S., Shang, L., Li, L., et al: ‘Lithium-ion battery security guaranteeing method study based on the state of charge estimation’, Int. J. Electrochem. Sci., 2015, 10, (6), pp. 51305151.
    18. 18)
      • 10. Kawamura, T., Kimura, A., Egashira, M., et al: ‘Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells’, J. Power Sources, 2002, 104, (2), pp. 260264.
    19. 19)
      • 18. Ouyang, M.G., Chu, Z.Y., Lu, L.G., et al: ‘Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles’, J. Power Sources, 2015, 286, pp. 309320.
    20. 20)
      • 2. Wu, C., Zhu, B., Ge, Y.: ‘A review on fault mechanism and diagnosis approach for li-ion batteries’, J. Nanomater., 2015, 2015, (631263), pp. 19.
    21. 21)
      • 34. Han, X., Ouyang, M., Lu, L., et al: ‘A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification’, J. Power Sources, 2014, 251, pp. 3854.
    22. 22)
      • 13. Zhao, M., Kariuki, S., Dewald, H.D., et al: ‘Electrochemical stability of copper in lithium-ion battery electrolytes’, J. Electrochem. Soc., 2000, 147, (8), pp. 28742879.
    23. 23)
      • 31. Galushkin, N., Yazvinskaya, N., Galushkin, D.: ‘Nonlinear structural model of the battery’, Int. J. Electrochem. Sci., 2014, 9, (11), pp. 63056327.
    24. 24)
      • 28. Wu, C., Sun, J.L., Zhu, C.B., et al: ‘Research on overcharge and overdischarge effect on lithium-ion batteries’. IEEE Vehicle Power and Propulsion Conf., Montreal, Canada, October 2015, pp. 16.
    25. 25)
      • 33. Wu, C., Zhu, C.B., Ge, Y.W., et al: ‘A diagnosis approach for typical faults of lithium-ion battery based on extended Kalman filter’, Int. J. Electrochem. Sci., 2016, 11, pp. 52895301.
    26. 26)
      • 36. Dubarry, M., Truchot, C.: ‘Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications: IV. Over-discharge phenomena batteries and energy storage’, J. Electrochem. Soc., 2015, 162, pp. A1787A1792.
    27. 27)
      • 22. Sidhu, A., Izadian, A., Anwar, S.: ‘Adaptive nonlinear model-based fault diagnosis of Li-ion batteries’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10021011.
    28. 28)
      • 14. Yufit, V., Shearing, P., Hamilton, R., et al: ‘Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography’, Electrochem. Commun., 2011, 13, pp. 608610.
    29. 29)
      • 30. Erol, S., Orazem, M.E., Muller, R.P.: ‘Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries’, J. Power Sources, 2014, 270, pp. 92100.
    30. 30)
      • 4. Dubarry, M., Truchot, C., Liaw, B.Y.: ‘Synthesize battery degradation modes via a diagnostic and prognostic model’, J. Power Sources, 2012, 219, pp. 204216.
    31. 31)
      • 5. Vetter, J., Novák, P., Wagner, M.R., et al: ‘Ageing mechanisms in lithium-ion batteries’, J. Power Sources, 2005, 147, pp. 269281.
    32. 32)
      • 6. Hendricks, C., Williard, N., Mathew, S., et al: ‘A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries’, J. Power Sources, 2015, 297, pp. 113120.
    33. 33)
      • 12. Zhang, S.S., Jow, T.R.: ‘Aluminum corrosion in electrolyte of Li-ion battery’, J. Power Sources, 2002, 109, (2), pp. 458464.
    34. 34)
      • 19. Dubarry, M., Liaw, B.Y.: ‘Identify capacity fading mechanism in a commercial LiFePO4 cell’, J. Power Sources, 2009, 194, pp. 541549.
    35. 35)
      • 37. Anseán, D., Dubarry, M., Devie, A., et al: ‘Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging’, J. Power Sources, 2016, 321, pp. 201209.
    36. 36)
      • 7. Nam, K.W., Bak, S.M., Hu, E., et al: ‘Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries’, Adv. Funct. Mater., 2013, 23, (8), pp. 10471063.
    37. 37)
      • 8. Agubra, V.A., Fergus, J.W.: ‘The formation and stability of the solid electrolyte interface on the graphite anode’, J. Power Sources, 2014, 268, pp. 153162.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0024
Loading

Related content

content/journals/10.1049/iet-est.2016.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading