http://iet.metastore.ingenta.com
1887

Dual input dual output power converter with one-step-ahead control for hybrid electric vehicle applications

Dual input dual output power converter with one-step-ahead control for hybrid electric vehicle applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The rapid conversion of automotive accessory loads to the electrical domain demands a power converter to interface between the on-board source and storage units with the accessories. This study proposes a simplified structure of dual input dual output (DIDO) with single-stage power conversion for hybrid electric vehicle accessory applications. The topology is synthesised using pulsating source cells. The generic switch model-based DIDO is realised with power switches based on switch realisation technique. Steady-state and equivalent circuit models describing the converter structure are presented. Numerical simulations were performed with the state-space averaged mathematical model. A one-step-ahead controller is used for inductor current control in conjunction with a mode selection logic to utilise its operating modes based on the availability of the sources and its protection. The performance of the proposed converter and its associated control scheme under steady-state, transient conditions are corroborated by simulation and experimental results.

References

    1. 1)
      • O. Zehner .
        1. Zehner, O.: ‘Unclean at any speed’, IEEE Spectr., 2013, 50, (7), pp. 4045.
        . IEEE Spectr. , 7 , 40 - 45
    2. 2)
      • J. Voelcker .
        2. Voelcker, J.: ‘Electric vehicles need more study, less emotion’, IEEE Spectr., 2013, 50, (8), pp. 88.
        . IEEE Spectr. , 8 , 8 - 8
    3. 3)
      • D. Kodjak . (2012)
        3. Kodjak, D.: ‘Consumer acceptance of electric vehicles in the US’ (The International Council for Clean Transportation, 2012), pp. 121.
        .
    4. 4)
      • S.M.N. Hasan , M.N. Anwar , M. Teimorzadeh .
        4. Hasan, S.M.N., Anwar, M.N., Teimorzadeh, M., et al: ‘Features and challenges for auxiliary power module (APM) design for hybrid/electric vehicle applications’. Proc. IEEE Vehicle Power and Propulsion Conf., September 2011, pp. 16.
        . Proc. IEEE Vehicle Power and Propulsion Conf. , 1 - 6
    5. 5)
      • J. Bauman , M. Kazerani .
        5. Bauman, J., Kazerani, M.: ‘A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (2), pp. 760769.
        . IEEE Trans. Veh. Technol. , 2 , 760 - 769
    6. 6)
      • H. Matsuo , W. Lin , F. Kurokawa .
        6. Matsuo, H., Lin, W., Kurokawa, F., et al: ‘Characteristics of the multiple-input DC–DC converter’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 625631.
        . IEEE Trans. Ind. Electron. , 3 , 625 - 631
    7. 7)
      • H. Tao , A. Kotsopoulos , J.L. Duarte .
        7. Tao, H., Kotsopoulos, A., Duarte, J.L., et al: ‘Transformer-coupled multiport ZVS bidirectional DC–DC converter with wide input range’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 771781.
        . IEEE Trans. Power Electron. , 2 , 771 - 781
    8. 8)
      • N. Benavides , P. Chapman .
        8. Benavides, N., Chapman, P.: ‘Power budgeting of a multiple-input buck-boost converter’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13031309.
        . IEEE Trans. Power Electron. , 6 , 1303 - 1309
    9. 9)
      • W. Jiang , B. Fahimi .
        9. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface—concept, modeling, and design’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18901900.
        . IEEE Trans. Power Electron. , 7 , 1890 - 1900
    10. 10)
      • L. Solero , A. Lidozzi , J. Pomilio .
        10. Solero, L., Lidozzi, A., Pomilio, J.: ‘Design of multiple-input power converter for hybrid vehicles’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10071016.
        . IEEE Trans. Power Electron. , 5 , 1007 - 1016
    11. 11)
      • Z. Li , O. Onar , A. Khaligh .
        11. Li, Z., Onar, O., Khaligh, A., et al: ‘Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system’. Proc. Twenty-Fourth Annual IEEE Applied Power Electronics Conf. and Exposition, February 2009, pp. 591596.
        . Proc. Twenty-Fourth Annual IEEE Applied Power Electronics Conf. and Exposition , 591 - 596
    12. 12)
      • Y.C. Liu , Y.M. Chen .
        12. Liu, Y.C., Chen, Y.M.: ‘A systematic approach to synthesizing multi-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 116127.
        . IEEE Trans. Power Electron. , 1 , 116 - 127
    13. 13)
      • H. Behjati , A. Davoudi .
        13. Behjati, H., Davoudi, A.: ‘A multiple-input multiple-output DC–DC converter’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14641479.
        . IEEE Trans. Ind. Appl. , 3 , 1464 - 1479
    14. 14)
      • R. Tymerski , V. Vorperian .
        14. Tymerski, R., Vorperian, V.: ‘Generation and classification of PWM DC-to-DC converters’, IEEE Trans. Aerospace Electron. Syst., 1988, 24, (6), pp. 743754.
        . IEEE Trans. Aerospace Electron. Syst. , 6 , 743 - 754
    15. 15)
      • A. Kwasinski .
        15. Kwasinski, A.: ‘Identification of feasible topologies for multiple-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 856861.
        . IEEE Trans. Power Electron. , 3 , 856 - 861
    16. 16)
      • H. Wu , K. Sun , S. Ding .
        16. Wu, H., Sun, K., Ding, S., et al: ‘Topology derivation of non-isolated three-port DC-DC converters from DIC and DOC’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 32973307.
        . IEEE Trans. Power Electron. , 7 , 3297 - 3307
    17. 17)
      • P.P.J. Grbovic , P. Delarue , P.L. Moigne .
        17. Grbovic, P.P.J., Delarue, P., Moigne, P.L., et al: ‘Modeling and control of the ultracapacitor-based regenerative controlled electric drives’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 34713484.
        . IEEE Trans. Ind. Electron. , 8 , 3471 - 3484
    18. 18)
      • A. Elgammal , A. Sharaf .
        18. Elgammal, A., Sharaf, A.: ‘Self-regulating particle swarm optimised controller for (photovoltaic–fuel cell) battery charging of hybrid electric vehicles’, IET Electr. Syst. Transport., 2012, 2, (2), pp. 7789.
        . IET Electr. Syst. Transport. , 2 , 77 - 89
    19. 19)
      • A.L. Allègre , R. Trigui , A. Bouscayrol .
        19. Allègre, A.L., Trigui, R., Bouscayrol, A.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transport., 2013, 3, (3), pp. 7985.
        . IET Electr. Syst. Transport. , 3 , 79 - 85
    20. 20)
      • P. Acuna , L. Moran , M. Rivera .
        20. Acuna, P., Moran, L., Rivera, M., et al: ‘Improved active power filter performance for renewable power generation systems’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 687694.
        . IEEE Trans. Power Electron. , 2 , 687 - 694
    21. 21)
      • J.D. Dasika , B. Bahrani , M. Saeedifard .
        21. Dasika, J.D., Bahrani, B., Saeedifard, M., et al: ‘Multivariable control of single-inductor dual-output buck converters’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20612070.
        . IEEE Trans. Power Electron. , 4 , 2061 - 2070
    22. 22)
      • A. Prodic , R. Erickson , D. Maksimovic .
        22. Prodic, A., Erickson, R., Maksimovic, D.: ‘Predictive digital current programmed control’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 411419.
        . IEEE Trans. Power Electron. , 1 , 411 - 419
    23. 23)
      • A. Kirubakaran , S. Jain , R.K. Nema .
        23. Kirubakaran, A., Jain, S., Nema, R.K.: ‘DSP-controlled power electronic interface for fuel-cell-based distributed generation’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 38533864.
        . IEEE Trans. Power Electron. , 12 , 3853 - 3864
    24. 24)
      • I. Kaya .
        24. Kaya, I.: ‘PI-PD controllers for controlling stable processes with inverse response and dead time’, Electr. Eng., 2015, 98, (1), pp. 5565.
        . Electr. Eng. , 1 , 55 - 65
    25. 25)
      • W.A. Silva , A.B.S. Junior , B.C. Torrico .
        25. Silva, W.A., Junior, A.B.S., Torrico, B.C., et al: ‘Generalized predictive control robust for position control of induction motor using field-oriented control’, Electr. Eng., 2015, 97, (3), pp. 195204.
        . Electr. Eng. , 3 , 195 - 204
    26. 26)
      • T.K. Santhosh , K. Natarajan , C. Govindaraju .
        26. Santhosh, T.K., Natarajan, K., Govindaraju, C.: ‘Synthesis and implementation of multi-port DC/DC converter for hybrid electric vehicle’, J. Power Electron., 2015, 15, (5), pp. 11781189.
        . J. Power Electron. , 5 , 1178 - 1189
    27. 27)
      • D. Killat .
        27. Killat, D.: ‘A dual-mode single-inductor dual-output switching converter with small ripple’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 614623.
        . IEEE Trans. Power Electron. , 3 , 614 - 623
    28. 28)
      • R. Erickson , D. Maksimovic . (2001)
        28. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer Press, 2001, 2nd edn.).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0017
Loading

Related content

content/journals/10.1049/iet-est.2016.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address