access icon free Dual input dual output power converter with one-step-ahead control for hybrid electric vehicle applications

The rapid conversion of automotive accessory loads to the electrical domain demands a power converter to interface between the on-board source and storage units with the accessories. This study proposes a simplified structure of dual input dual output (DIDO) with single-stage power conversion for hybrid electric vehicle accessory applications. The topology is synthesised using pulsating source cells. The generic switch model-based DIDO is realised with power switches based on switch realisation technique. Steady-state and equivalent circuit models describing the converter structure are presented. Numerical simulations were performed with the state-space averaged mathematical model. A one-step-ahead controller is used for inductor current control in conjunction with a mode selection logic to utilise its operating modes based on the availability of the sources and its protection. The performance of the proposed converter and its associated control scheme under steady-state, transient conditions are corroborated by simulation and experimental results.

Inspec keywords: hybrid electric vehicles; electric current control; power inductors; switching convertors

Other keywords: storage units; hybrid electric vehicle applications; pulsating source cells; one-step-ahead control; power switches; switch realisation technique; dual input dual output power converter; automotive accessory; generic switch model-based DIDO; single-stage power conversion; inductor current control; on-board source; electrical domain; state-space averaged mathematical model

Subjects: Transportation; Power convertors and power supplies to apparatus; Current control; Transformers and reactors; Control of electric power systems; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 8. Benavides, N., Chapman, P.: ‘Power budgeting of a multiple-input buck-boost converter’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13031309.
    2. 2)
      • 7. Tao, H., Kotsopoulos, A., Duarte, J.L., et al: ‘Transformer-coupled multiport ZVS bidirectional DC–DC converter with wide input range’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 771781.
    3. 3)
      • 14. Tymerski, R., Vorperian, V.: ‘Generation and classification of PWM DC-to-DC converters’, IEEE Trans. Aerospace Electron. Syst., 1988, 24, (6), pp. 743754.
    4. 4)
      • 27. Killat, D.: ‘A dual-mode single-inductor dual-output switching converter with small ripple’, IEEE Trans. Power Electron., 2010, 25, (3), pp. 614623.
    5. 5)
      • 24. Kaya, I.: ‘PI-PD controllers for controlling stable processes with inverse response and dead time’, Electr. Eng., 2015, 98, (1), pp. 5565.
    6. 6)
      • 6. Matsuo, H., Lin, W., Kurokawa, F., et al: ‘Characteristics of the multiple-input DC–DC converter’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 625631.
    7. 7)
      • 28. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer Press, 2001, 2nd edn.).
    8. 8)
      • 16. Wu, H., Sun, K., Ding, S., et al: ‘Topology derivation of non-isolated three-port DC-DC converters from DIC and DOC’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 32973307.
    9. 9)
      • 17. Grbovic, P.P.J., Delarue, P., Moigne, P.L., et al: ‘Modeling and control of the ultracapacitor-based regenerative controlled electric drives’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 34713484.
    10. 10)
      • 12. Liu, Y.C., Chen, Y.M.: ‘A systematic approach to synthesizing multi-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 116127.
    11. 11)
      • 26. Santhosh, T.K., Natarajan, K., Govindaraju, C.: ‘Synthesis and implementation of multi-port DC/DC converter for hybrid electric vehicle’, J. Power Electron., 2015, 15, (5), pp. 11781189.
    12. 12)
      • 25. Silva, W.A., Junior, A.B.S., Torrico, B.C., et al: ‘Generalized predictive control robust for position control of induction motor using field-oriented control’, Electr. Eng., 2015, 97, (3), pp. 195204.
    13. 13)
      • 22. Prodic, A., Erickson, R., Maksimovic, D.: ‘Predictive digital current programmed control’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 411419.
    14. 14)
      • 20. Acuna, P., Moran, L., Rivera, M., et al: ‘Improved active power filter performance for renewable power generation systems’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 687694.
    15. 15)
      • 1. Zehner, O.: ‘Unclean at any speed’, IEEE Spectr., 2013, 50, (7), pp. 4045.
    16. 16)
      • 11. Li, Z., Onar, O., Khaligh, A., et al: ‘Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system’. Proc. Twenty-Fourth Annual IEEE Applied Power Electronics Conf. and Exposition, February 2009, pp. 591596.
    17. 17)
      • 23. Kirubakaran, A., Jain, S., Nema, R.K.: ‘DSP-controlled power electronic interface for fuel-cell-based distributed generation’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 38533864.
    18. 18)
      • 18. Elgammal, A., Sharaf, A.: ‘Self-regulating particle swarm optimised controller for (photovoltaic–fuel cell) battery charging of hybrid electric vehicles’, IET Electr. Syst. Transport., 2012, 2, (2), pp. 7789.
    19. 19)
      • 21. Dasika, J.D., Bahrani, B., Saeedifard, M., et al: ‘Multivariable control of single-inductor dual-output buck converters’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20612070.
    20. 20)
      • 4. Hasan, S.M.N., Anwar, M.N., Teimorzadeh, M., et al: ‘Features and challenges for auxiliary power module (APM) design for hybrid/electric vehicle applications’. Proc. IEEE Vehicle Power and Propulsion Conf., September 2011, pp. 16.
    21. 21)
      • 15. Kwasinski, A.: ‘Identification of feasible topologies for multiple-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 856861.
    22. 22)
      • 3. Kodjak, D.: ‘Consumer acceptance of electric vehicles in the US’ (The International Council for Clean Transportation, 2012), pp. 121.
    23. 23)
      • 5. Bauman, J., Kazerani, M.: ‘A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell–battery–ultracapacitor vehicles’, IEEE Trans. Veh. Technol., 2008, 57, (2), pp. 760769.
    24. 24)
      • 13. Behjati, H., Davoudi, A.: ‘A multiple-input multiple-output DC–DC converter’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 14641479.
    25. 25)
      • 9. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface—concept, modeling, and design’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18901900.
    26. 26)
      • 2. Voelcker, J.: ‘Electric vehicles need more study, less emotion’, IEEE Spectr., 2013, 50, (8), pp. 88.
    27. 27)
      • 10. Solero, L., Lidozzi, A., Pomilio, J.: ‘Design of multiple-input power converter for hybrid vehicles’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10071016.
    28. 28)
      • 19. Allègre, A.L., Trigui, R., Bouscayrol, A.: ‘Flexible real-time control of a hybrid energy storage system for electric vehicles’, IET Electr. Syst. Transport., 2013, 3, (3), pp. 7985.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0017
Loading

Related content

content/journals/10.1049/iet-est.2016.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading