Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient multirate simulation techniques for multi-physics systems with different time scales: application on an all-electric ferry design

This study introduces a multirate method for the simulation of multi-physics systems containing a wide range of time scales. This method has been designed for strongly coupled systems and is able to deal with high mutual dependency between fast and slow state variables. The proposed method based on a cycle formulation approach is applied to the ageing behaviour simulation of the energy storage unit (ESU) of an all-electric ferry. The objective is to design this ESU taking into account the electrical and thermal models, permitting to predict its ageing over the 20 years of the ferry operation. So, simulations could be excessively time consuming. The main objective behind this study is to reduce the simulation time to make possible an optimisation process. Using the proposed multirate method based on embedded extrapolation methods formulated on cycles, a speed-up factor of about 1000 compared with standard integration methods is obtained. Numerical results for the electric ferry example are presented for different tolerances in order to demonstrate the performance of the method.

References

    1. 1)
      • 3. Zupančič, B., Sodja, A.: ‘Computer-aided physical multi-domain modelling: some experiences from education and industrial applications’, Simul. Model. Pract. Theory, 2013, 33, pp. 4567.
    2. 2)
      • 29. Ilie, S., Jackson, K.R., Enright, W.H.: ‘Adaptive time-stepping for the strong numerical solution of stochastic differential equations’, Numer. Algorithms, 2015, 68, (4), pp. 791812.
    3. 3)
      • 12. Sciberras, E., Norman, R.: ‘Multi-objective design of a hybrid propulsion system for marine vessels’, IET Electr. Syst. Transp., 2012, 2, (3), p. 148.
    4. 4)
      • 34. Kreczanik, P., Venet, P., Hijazi, A., et al: ‘Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 48954902.
    5. 5)
      • 32. Ostadi, A., Kazerani, M.: ‘A comparative analysis of optimal sizing of battery-only, ultracapacitor-only, and battery–ultracapacitor hybrid energy storage systems for a city bus’, IEEE Trans. Veh. Technol., 2015, 64, (10), pp. 44494460.
    6. 6)
      • 23. Soetaert, K., Meysman, F., Petzoldt, T.: ‘Solving differential equations in R’, R J., 2010, 2, pp. 3234.
    7. 7)
      • 19. Bingham, C., Walsh, C., Carroll, S.: ‘Impact of driving characteristics on electric vehicle energy consumption and range’, IET Intell. Transp. Syst., 2012, 6, (1), pp. 2935.
    8. 8)
      • 30. Burrage, P.M., Herdiana, R., Burrage, K.: ‘Adaptive stepsize based on control theory for stochastic differential equations’, J. Comput. Appl. Math., 2004, 170, (2), pp. 317336.
    9. 9)
      • 7. Pekarek, S.D., Wasynczuk, O., Walters, E.A., et al: ‘An efficient multirate simulation technique for power-electronic-based systems’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 399409.
    10. 10)
      • 28. Holsapple, R., Iyer, R., Doman, D.: ‘Variable step-size selection methods for implicit integration schemes for ODES’, Int. J. Numer. Anal. Model., 2007, 4, (2), pp. 210240.
    11. 11)
      • 17. Burke, A.F.: ‘Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 806820.
    12. 12)
      • 15. Hmam, S., Olivier, J.-C., Bourguet, S., et al: ‘A multirate simulation method for large timescale systems applied for lifetime simulations’. Vehicle Power and Propulsion Conf. (VPPC), 2015, pp. 16.
    13. 13)
      • 18. Ravey, A., Watrin, N., Blunier, B., et al: ‘Energy-source-sizing methodology for hybrid fuel cell vehicles based on statistical description of driving cycles’, IEEE Trans. Veh. Technol., 2011, 60, (9), pp. 41644174.
    14. 14)
      • 5. Savcenco, V., Haut, B.: ‘Construction and analysis of an automatic multirate time domain simulation method for large power systems’, Electr. Power Syst. Res., 2014, 107, pp. 2835.
    15. 15)
      • 6. Chen, J., Crow, M.: ‘A variable partitioning strategy for the multirate method in power systems’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 259266.
    16. 16)
      • 26. Tse, C.K., Bernardo, M.D.: ‘Complex behavior in switching power converters’, Proc. IEEE, 2002, 90, (5), pp. 768781.
    17. 17)
      • 35. Bohlen, O., Kowal, J., Sauer, D.U.: ‘Ageing behaviour of electrochemical double layer capacitors part II. Lifetime simulation model for dynamic applications’, J. Power Sources, 2007, 173, pp. 626632.
    18. 18)
      • 8. Thiele, B., Otter, M., Mattsson, S.E.: ‘Modular multi-rate and multi-method real-time simulation’. Proc. Tenth Int. Modelica Conf., 2014, pp. 381393.
    19. 19)
      • 31. Söderlind, G.: ‘The automatic control of numerical integration’, CWI Q., 1998, 11, (1), pp. 5574.
    20. 20)
      • 22. Yang, D., Member, S., Ajjarapu, V., et al: ‘A decoupled time-domain simulation method via invariant subspace partition for power system analysis’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 1118.
    21. 21)
      • 24. Gear, C.W.: ‘Differential algebraic equations, indices, and integral algebraic equations’, SIAM J. Numer. Anal., 1990, 27, (6), pp. 15271534.
    22. 22)
      • 11. Gear, C.W., Petzold, L.R.: ‘ODE methods for the solution of differential/algebraic systems’, SIAM J. Numer. Anal., 1984, 21, (4), pp. 716728.
    23. 23)
      • 14. Tsekouras, G.J., Kanellos, F.D., Prousalidis, J.: ‘Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration’, IET Electr. Syst. Transp., 2014, 5, (2), pp. 6169.
    24. 24)
      • 21. Hairer, E., Wanner, G.: ‘Stiff differential equations solved by Radau methods’, J. Comput. Appl. Math., 1999, 111, (1), pp. 93111.
    25. 25)
      • 4. Liu, L., Felgner, F., Frey, G.: ‘Comparison of 4 numerical solvers for stiff and hybrid systems simulation’. Proc. of the 15th IEEE Int. Conf. on Emerging Technologies and Factory Automation, ETFA 2010, 2010, pp. 18.
    26. 26)
      • 9. Papadopoulos, A.V., Leva, A.: ‘Automating dynamic decoupling in object-oriented modelling and simulation tools’. Fifth Workshop on Equation-based Object-Oriented Modeling Languages and Tools EOOLT, Nottingham, UK, 2013, vol. 90, no. 084, pp. 3744.
    27. 27)
      • 2. Yang, D., Jin, T.: ‘A decoupled dynamical simulation method via modal partition’. 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 12.
    28. 28)
      • 20. Shankar, R., Marco, J.: ‘Method for estimating the energy consumption of electric vehicles and plug-in hybrid electric vehicles under real-world driving conditions’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 138150.
    29. 29)
      • 33. Devillers, N., Jemei, S., Péra, M., et al: ‘Review of characterization methods for supercapacitor modelling’, J. Power Sources, 2014, 246, pp. 596608.
    30. 30)
      • 10. Butcher, J.C.: ‘A history of Runge–Kutta methods’, Appl. Numer. Math., 1996, 20, (3), pp. 247260.
    31. 31)
      • 27. Stoer, J., Bulirsch, R.: ‘Introduction to numerical analysis, third edition, texts in applied mathematics 12’ (Springer-Verlag, New York, 2002).
    32. 32)
      • 25. Middlebrook, R., Cuk, S.: ‘A general unified approach to modelling switching-converter power stages’. 1976 IEEE Power Electronics Specialists Conf., 1976, pp. 1834.
    33. 33)
      • 13. Fernandes Trovao, J.P., Gameiro Pereirinha, P.J.: ‘Control scheme for hybridised electric vehicles with an online power follower management strategy’, IET Electr. Syst. Transp., 2015, 5, (1), pp. 1223.
    34. 34)
      • 1. Crosbie, R.E., Zenor, J.J., Bednar, R., et al: ‘Multi-rate simulation techniques for electric ship design’. 2007 IEEE Electric Ship Technologies Symp., 2007, pp. 384389.
    35. 35)
      • 16. Trieste, S., Hmam, S., Olivier, J., et al: ‘Techno-economic optimization of a supercapacitor-based energy storage unit chain: application on the first quick charge plug-in ferry’, Appl. Energy, 2015, 153, pp. 314.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0016
Loading

Related content

content/journals/10.1049/iet-est.2016.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address