access icon free Aging of high power Li-ion cells during real use of electric vehicles

Currently, the vehicle manufacturers use the high power Li-ion technology to supply the electric and hybrid vehicles. This technology is able to ensure the power needed to propel the vehicle. Until now several studies have been made by the laboratories and manufacturers to characterise this technology. The aim of these test (electric, thermal, aging,…) is to make comparison between Li-ion technologies and choice the best one for each application. For that, they use accelerated cycling with different condition to characterise cells, what can reduce the tests duration. Unfortunately, this type of cycle cannot give us information about the aging of HP Li-ion technology under real use of the vehicle. Firstly, the requirements specification (vehicle specification, battery technologies, mission) has been presented. After that, the authors will present the test bench developed in the laboratory to characterise batteries and study the aging of the HP technology. Here the authors present the study of the Li-ion HP behaviour during almost 3 years and the modelling (electric, thermal and aging modelling) using a real driving cycle. The experimental results are compared with the results obtained with the developed ageing model. The obtained results prove the good performances of this technology in electric vehicle applications.

Inspec keywords: hybrid electric vehicles; battery powered vehicles; ageing; secondary cells; life testing; lithium compounds

Other keywords: accelerated cycling; electric vehicles; HP technology; hybrid electric vehicles; high power lithium-ion cell aging

Subjects: Production facilities and engineering; Secondary cells; Secondary cells; Transportation

References

    1. 1)
      • 5. Sadoun, R., Rizoug, N., Bartholomeüs, P., et al: ‘Influence des cycles de conduite sur le dimensionnement du système de stockage hybride batterie-Supercondensateur alimentant un véhicule électrique’. EF'11, Belfort, Décembre 2011.
    2. 2)
      • 11. Bhide, S., Shim, T.: ‘Novel predictive electric Li-ion battery model incorporating thermal and rate factor effects’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 819829.
    3. 3)
      • 10. Mesbahi, T., Rizoug, N., Bartholomeus, P., et al: ‘Li-ion battery emulator for electric vehicle applications’. 2013 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2013, pp. 18.
    4. 4)
      • 1. Graham, L., Christenson, M., Karman, D.: ‘Light duty hybrid vehicles- influence of driving cycle and operating temperature on fuel economy and GHG emissions’. IEEE, 2006.
    5. 5)
      • 7. Sadoun, R., Rizoug, N., Bartholomeus, P., et al: ‘Influence of the drive cycles on the sizing of hybrid storage system Battery-Supercapacitor supplying an electric vehicle’. 37th Annual Conf. on IEEE Industrial Electronics Society, IECON11, Melbourne, 2011, pp. 41064112.
    6. 6)
      • 2. André, M.: ‘Real-world driving cycles for measuring cars pollutant emissions - Part A: The ARTEMIS European driving cycles’. Report INREST-LTE 0411, June 2004.
    7. 7)
      • 14. Mesbahi, T., Khenfri, F., Rizoug, N., et al: ‘Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm’, Electr. Power Syst. Res., 2016, 131, pp. 195204.
    8. 8)
      • 13. Zhang, L., Wang, L., Hinds, G., et al: ‘Multi-objective optimization of lithium-ion battery model using genetic algorithm approach’, J. Power Sources, 2014, 270, pp. 367378.
    9. 9)
      • 15. Ecker, M., Gerschler, J.B., Vogel, J., et al: ‘Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data’, J. Power Sources, 2012, 215, pp. 248257.
    10. 10)
      • 16. Urbain, M.: ‘Modélisation électrique et énergétique des accumulateurs Lithium-ion en ligne du SOC et de SOH’. Thèse de doctorat, Institut National Polytechnique de Lorraine, 2009.
    11. 11)
      • 12. Chen, M., Rincon-Mora, G.A.: ‘Accurate electrical battery model capable of predicting runtime and I–V performance’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 504511.
    12. 12)
      • 6. http://www.dowkokam.com/.
    13. 13)
      • 17. Nadeau, J., Dubois, M.R., Desrochers, A., et al: ‘Ageing estimation of Lithium-ion batteries applied to a three-wheel PHEV roadster’. 2013 IEEE Vehicle Power and Propulsion Conf. (VPPC), Beijing, 2013, pp. 16.
    14. 14)
      • 9. Rizoug, N.: ‘Modélisation électrique et énergétique des supercondensateurs et méthodes de caractérisation: application au cyclage d'un module de supercondensateur basse tension en grande puissance’. Thèse de doctorat, École Centrale de Lille, 2006.
    15. 15)
      • 4. http://www.saftbatteries.com/.
    16. 16)
      • 3. http://www.bluecar.fr, consulté le: 09-12-2012.
    17. 17)
      • 8. Sadoun, R., Rizoug, N., Bartholomeus, P., et al: ‘Sizing of hybrid supply (Battery-Supercapacitor) for electric vehicle taking into account the weight of the additional buck-boost chopper’. IEEE-Conf. REVET12, Hammamet, February 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0012
Loading

Related content

content/journals/10.1049/iet-est.2016.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading