Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effects of environmental factors on electric vehicle energy consumption: a sensitivity analysis

(Special section ‘Design, modelling and control of electric vehicles’) This study provides a detailed deterministic and stochastic sensitivity analysis of the propulsion energy cost of electric vehicles (EVs) with respect to environmental variables. In particular, the effects of wind speed, rolling resistance, parasitic power and temperature are highlighted. The study provides exact analytical expressions as well as simulations to illustrate the key results. It is shown that the sensitivity of energy consumption with respect to the four environmental variables greatly vary with operating conditions of the vehicle. These environmental effects can have a profound effect on the overall energy consumption of EVs and drastically affect range. The significance of the authors’ findings for vehicle range estimation is discussed and potential avenues to exploit the strong dependency between propulsion energy and environmental factors are proposed.

References

    1. 1)
      • 13. Grewal, K., Darnell, P.: ‘Model-based EV range prediction for electric hybrid vehicles’. Hybrid and Electric Vehicles Conf. (HEVC), London, November 2013, pp. 16.
    2. 2)
      • 29. Pesaran, A., Santhanagopalan, S., Kim, G.: ‘Addressing the impact of temperature extremes on large format li-ion batteries for vehicle applications (presentation)’. Technical Report, National Renewable Energy Laboratory (NREL), Golden, CO, 2013.
    3. 3)
      • 23. Yi, Z., Bauer, P.H.: ‘Sensitivity analysis of environmental factors for electric vehicles energy consumption’. Vehicle Power and Propulsion Conf. (VPPC), Montreal, Canada, October 2015, pp. 16.
    4. 4)
      • 7. Chan, C.: ‘The state of the art of electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 704718.
    5. 5)
      • 21. Bilgin, B., Magne, P., Malysz, P., et al: ‘Making the case for electrified transportation’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 417.
    6. 6)
      • 6. Sundström, O., Binding, C.: ‘Optimization methods to plan the charging of electric vehicle fleets’, ACEEE Int. J. Commun., 2010, 1, (2), pp. 4550.
    7. 7)
      • 24. Irving, A.: ‘Stochastic sensitivity analysis’, Appl. Math. Model., 1992, 16, (1), pp. 315.
    8. 8)
      • 3. Sperling, D.: ‘Future drive: electric vehicles and sustainable transportation’ (Island Press, 1995).
    9. 9)
      • 8. Dickerman, L., Harrison, J.: ‘A new car, a new grid’, IEEE Power Energy Mag., 2010, 8, (2), pp. 5561.
    10. 10)
      • 11. Hayes, J.G., de Oliveira, R.P.R., Vaughan, S., et al: ‘Simplified electric vehicle power train models and range estimation’. Vehicle Power and Propulsion Conf. (VPPC), Chicago, IL, September 2011, pp. 15.
    11. 11)
      • 26. Dost, P., Spichartz, P., Sourkounis, C.: ‘Temperature influence on state-of-the-art electric vehicles’ consumption based on fleet measurements’. Int. Conf. on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany, March 2015, pp. 16.
    12. 12)
      • 17. Hu, X., Murgovski, N., Johannesson, L., et al: ‘Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes’, Appl. Energy, 2013, 111, pp. 10011009.
    13. 13)
      • 2. Armaroli, N., Balzani, V.: ‘Towards an electricity-powered world’, Energy Environ. Sci., 2011, 4, (9), pp. 31933222.
    14. 14)
      • 1. Eberle, U., von Helmolt, R.: ‘Sustainable transportation based on electric vehicle concepts: a brief overview’, Energy Environ. Sci., 2010, 3, (6), pp. 689699.
    15. 15)
      • 19. Yi, Z., Bauer, P.H.: ‘Spatio-temporal energy demand models for electric vehicles’. Vehicle Power and Propulsion Conf. (VPPC), Coimbra, October 2014, pp. 16.
    16. 16)
      • 20. Yi, Z., Bauer, P.H.: ‘Optimal speed profiles for sustainable driving of electric vehicles’. Vehicle Power and Propulsion Conf. (VPPC), Montreal, Canada, October 2015, pp. 16.
    17. 17)
      • 9. Hu, X., Murgovski, N., Johannesson, L.M., et al: ‘Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (3), pp. 11931205.
    18. 18)
      • 12. Prins, R., Hurlbrink, R., Winslow, L.: ‘Electric vehicle energy usage modelling and measurement’, Int. J. Mod. Eng., 2013, 13, (1), pp. 512.
    19. 19)
      • 27. Mehrdad, E., Yimin, G., Ali, E.: ‘Modern electric, hybrid electric, and fuel cell vehicles’ (CRC Press, Boca Raton, FL, 2010).
    20. 20)
      • 28. Bandhauer, T.M., Garimella, S., Fuller, T.F.: ‘A critical review of thermal issues in lithium ion batteries’, J. Electrochem. Soc., 2011, 158, (3), pp. R1R25.
    21. 21)
      • 30. Hu, X., Li, S., Peng, H., et al: ‘Charging time and loss optimization for linmc and lifepo 4 batteries based on equivalent circuit models’, J. Power Sources, 2013, 239, pp. 449457.
    22. 22)
      • 25. Damiani, C., Filisetti, A., Graudenzi, A., et al: ‘Parameter sensitivity analysis of stochastic models: application to catalytic reaction networks’, Comput. Biol. Chem., 2013, 42, (1), pp. 517.
    23. 23)
      • 15. Ondruska, P., Posner, I.: ‘Probabilistic attainability maps: efficiently predicting driver-specific electric vehicle range’. Intelligent Vehicles Symp. Proc., 2014, pp. 11691174.
    24. 24)
      • 16. Zhang, Y., Wang, W., Kobayashi, Y., et al: ‘Remaining driving range estimation of electric vehicle’. Int. Electric Vehicle Conf. (IEVC), 2012, pp. 17.
    25. 25)
      • 18. Yi, Z., Bauer, P.H.: ‘Energy consumption model and charging station placement for electric vehicles’. 3rd Int. Conf. on Smart Grids and Green IT Systems, Barcelona, Spain, April 2014, pp. 150156.
    26. 26)
      • 5. Sioshansi, R., Denholm, P.: ‘Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services’, Environ. Sci. Technol., 2009, 43, (4), pp. 11991204.
    27. 27)
      • 10. Chan, C.-C., Bouscayrol, A., Chen, K.: ‘Electric, hybrid, and fuel-cell vehicles: architectures and modeling’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 589598.
    28. 28)
      • 31. Bolstad, W.M.: ‘Introduction to Bayesian statistics’ (John Wiley & Sons, 2013).
    29. 29)
      • 4. Bradley, T.H., Frank, A.A.: ‘Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles’, Renew. Sustain. Energy Rev., 2009, 13, (1), pp. 115128.
    30. 30)
      • 22. Yuksel, T., Michalek, J.J.: ‘Effects of regional temperature on electric vehicle efficiency, range, and emissions in the united states’, Environ. Sci. Technol., 2015, 49, (6), pp. 39743980.
    31. 31)
      • 14. Ondruska, P., Posner, I.: ‘The route not taken: driver-centric estimation of electric vehicle range’. Twenty-Fourth Int. Conf. on Automated Planning and Scheduling, Portsmouth, New Hampshire, June 2014, pp. 413420.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2016.0011
Loading

Related content

content/journals/10.1049/iet-est.2016.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address