http://iet.metastore.ingenta.com
1887

Accurate range estimation for an electric vehicle including changing environmental conditions and traction system efficiency

Accurate range estimation for an electric vehicle including changing environmental conditions and traction system efficiency

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Range anxiety is an obstacle to the acceptance of electric vehicles (EVs), caused by drivers’ uncertainty regarding their vehicle's state of charge (SoC) and the energy required to reach their destination. Most estimation methods for these variables use simplified models with many assumptions that can result in significant error, particularly if dynamic and environmental conditions are not considered. For example, the combined efficiency of the inverter drive and electric motor varies throughout the route and is not constant as assumed in most range estimation methods. This study proposes an improved method for SoC and range estimation by taking into account location-dependent environmental conditions and time-varying drive system losses. To validate the method, an EV was driven along a selected route and the measured EV battery SoC at the destination was compared with that predicted by the algorithm. The results demonstrated excellent accuracy in the SoC and range estimation, which should help alleviate range anxiety.

References

    1. 1)
      • V.R. Tannahill , K.M. Muttaqi , D. Sutanto .
        1. Tannahill, V.R., Muttaqi, K.M., Sutanto, D.: ‘Driver alerting system using range estimation of electric vehicles in real time under dynamically varying environmental conditions’, IET Electr. Syst. Transp., 2015, pp. 110.
        . IET Electr. Syst. Transp. , 1 - 10
    2. 2)
      • A. Graser , J. Asamer , M. Dragaschnig .
        2. Graser, A., Asamer, J., Dragaschnig, M.: ‘How to reduce range anxiety? The impact of digital elevation model quality on energy estimates for electric vehicles’, GI Forum, 2014, pp. 165174.
        . GI Forum , 165 - 174
    3. 3)
      • R. Shankar , J. Marco .
        3. Shankar, R., Marco, J.: ‘Method for estimating the energy consumption of electric vehicles and plug-in hybrid electric vehicles under real-world driving conditions’, IET Intell. Transp. Syst., 2013, 7, (1), pp. 138150.
        . IET Intell. Transp. Syst. , 1 , 138 - 150
    4. 4)
      • R. Prins , R. Hurlbrink , L. Winslow .
        4. Prins, R., Hurlbrink, R., Winslow, L.: ‘Electric vehicle energy usage modelling and measurement’, IJME, 2013, 13, (1), pp. 512.
        . IJME , 1 , 5 - 12
    5. 5)
      • W. Vaz , A.K.R. Nandi , R.G. Landers .
        5. Vaz, W., Nandi, A.K.R., Landers, R.G., et al: ‘Electric vehicle range prediction for constant speed trip using multi-objective optimization’, J. Power Sources, 2015, 275, pp. 435446.
        . J. Power Sources , 435 - 446
    6. 6)
      • E. Schaltz . (2011)
        6. Schaltz, E.: ‘Electrical vehicle design and modelingSoylu, Seref (Ed.), INTECH Open Access Publisher, Croatia, 2011).
        .
    7. 7)
      • X. Wu , D. Freese , A. Cabrera .
        7. Wu, X., Freese, D., Cabrera, A., et al: ‘Electric vehicles’ energy consumption measurement and estimation’, Transp. Res. D, 2015, 34, pp. 5267.
        . Transp. Res. D , 52 - 67
    8. 8)
      • B. Tabbache , A. Kheloui , M. Benbouzid .
        8. Tabbache, B., Kheloui, A., Benbouzid, M.: ‘Design and control of the induction motor propulsion of an electric vehicle’. Proc. IEEE VPPC, Lille, France, September 2010, pp. 16.
        . Proc. IEEE VPPC , 1 - 6
    9. 9)
      • S. Williamson , A. Emadi , K. Rajashekara .
        9. Williamson, S., Emadi, A., Rajashekara, K.: ‘Comprehensive efficiency modeling of electric traction motor drives for hybrid electric vehicle propulsion applications’, IEEE Trans. Veh. Technol., 2007, 56, pp. 15611572.
        . IEEE Trans. Veh. Technol. , 1561 - 1572
    10. 10)
      • G. Rizzoni , L. Guzzella , B.M. Baumann .
        10. Rizzoni, G., Guzzella, L., Baumann, B.M.: ‘Unified modeling of hybrid electric vehicle drivetrains’, IEEE/ASME Trans. Mechatronics, 1999, 4, pp. 246257.
        . IEEE/ASME Trans. Mechatronics , 246 - 257
    11. 11)
      • I. Boldea , S.A. Nasar . (2010)
        11. Boldea, I., Nasar, S.A.: ‘The induction machine handbook’ (CRC press, Florida, USA, 2010).
        .
    12. 12)
      • M.A. El-Sharkawi . (2000)
        12. El-Sharkawi, M.A.: ‘Fundamentals of electric drives,’ (Brooks/Cole Publishing Company, California, USA, 2000).
        .
    13. 13)
      • J. Cathey . (2001)
        13. Cathey, J.: ‘Electric machines, analysis and design, applying MATLAB’ (McGraw-Hill, Boston, USA, 2001).
        .
    14. 14)
      • J. Soulard , S. Meier , Y. Chin .
        14. Soulard, J., Meier, S., Chin, Y.: ‘Modelling of iron losses in permanent magnet motors with field-weakening capability’. Proc. NorPie, Sweden, 2002.
        . Proc. NorPie
    15. 15)
      • N. Mohan , T.M. Undeland , W.P. Robbins . (2001)
        15. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications, and design’ (John Willey & Sons, New Jersey, USA, 2001, 3rd edn.).
        .
    16. 16)
      • F. Casanellas .
        16. Casanellas, F.: ‘Losses in PWM inverters using IGBTs’, IEE Proc. Electr. Power Appl., 1994, 141, pp. 235239.
        . IEE Proc. Electr. Power Appl. , 235 - 239
    17. 17)
      • P.A. Dahono , Y. Sato , T. Kataoka .
        17. Dahono, P.A., Sato, Y., Kataoka, T.: ‘Analysis of conduction losses in inverters’, IEE Proc. Electr. Power Appl., 1995, 142, pp. 225232.
        . IEE Proc. Electr. Power Appl. , 225 - 232
    18. 18)
      • D. Istardi .
        18. Istardi, D.: ‘Modeling and energy consumption determination of an electric go-kart’. MSc thesis, Chalmers University of Technology, Sweden, 2009.
        . MSc thesis
    19. 19)
      • V.R. Tannahill , D. Sutanto , K.M. Muttaqi .
        19. Tannahill, V.R., Sutanto, D., Muttaqi, K.M., et al: ‘Future vision for reduction of range anxiety by using an improved state of charge estimation algorithm for electric vehicle batteries implemented with low-cost microcontrollers’, IET Electr. Syst. Transp., 2015, 5, (1), pp. 2432.
        . IET Electr. Syst. Transp. , 1 , 24 - 32
    20. 20)
      • 20. WU (Weather Underground)’. Available at https://www.wunderground.com, accessed March 2016.
        .
    21. 21)
      • T.D. Gillespie . (1992)
        21. Gillespie, T.D.: ‘Fundamentals of vehicle dynamics’ (SAE International, R-114, ISBN of 978-1-56091-199-9, Pennsylvania, USA, 1992).
        .
    22. 22)
      • 22. 2008 Hyundai getz phase-II hatchback all versions specifications and performance data’. Available at http://www.automobile-catalog.com/make/hyundai/click/getz_phase-ii_hatchback/2008.html, accessed March 2016.
        .
    23. 23)
      • H.S.M. Nayeem .
        23. Nayeem, H.S.M.: ‘Hybrid electric vehicle powertrain: on-line parameter estimation of an induction motor drive and torque control of a PM BLDC starter-generator’. PhD thesis, University of Akron, US, 2008.
        . PhD thesis
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0052
Loading

Related content

content/journals/10.1049/iet-est.2015.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address