access icon free Thermal management of electric machines

Electric machines have broadly been used in many industries including the transportation industry. With the evolving trend of electrification in transportation, electric machines with higher power density and higher efficiency are demanded and, thus, more stringent thermal management requirements are needed for electrified vehicle applications. This study comprehensively presents various important aspects of thermal management in electric machines with the main focus on transportation applications. Design considerations, challenges, and methods for enhanced thermal management are discussed. Fundamental thermal properties of common materials are presented and sources of losses in various parts of machines are explained. Furthermore, typical cooling techniques and thermal analysis approaches for electric machines are reviewed in detail. This study will serve as a reference guideline for machine designers, who are interested in thermal management, and for thermal researchers working on electric machines.

Inspec keywords: cooling; electric machines; design engineering; electric vehicles

Other keywords: transportation industry; electric machines; design consideration; thermal properties; machine designer; transportation application; thermal management enhancement; cooling technique; electrified vehicle application; power density

Subjects: d.c. machines; Transportation; a.c. machines

References

    1. 1)
      • 39. Tong, W.: ‘Mechanical design of electric motors’ (CRC Press, Boca Raton, FL, 2014).
    2. 2)
      • 32. Magnet Wire/Winding Wire Product Application and Packaging Data’. Superior Essex, 1999. Available at: http://www.superioressex.com/.
    3. 3)
      • 44. Chang, C.C., Cheng, C.H., Ke, M.T., et al: ‘Experimental and numerical investigations of air cooling for a large-scale motor’, Int. J. Rotating Mach., 2009, 2009, pp. 17.
    4. 4)
      • 99. Wu, W., Dunlop, J.B., Collocott, S.J., et al: ‘Design optimization of switched reluctance motor by electromagnetic and thermal finite element analysis’. Digest of INTERMAG 2003. Int. Magnetics Conf., vol. 39, no. 5, 2003, pp. 33343336.
    5. 5)
      • 1. Boldea, I., Tutelea, L.N.: ‘Electric machines: steady state, transients, and design with MATLAB’ (CRC Press, Boca Raton, FL, 2009).
    6. 6)
      • 6. Hou, R., Yang, Y., Emadi, A.: ‘Hybrid electric locomotive powertrains’. IEEE Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 2014.
    7. 7)
      • 67. Borges, S.S., Cezario, C.A., Kunz, T.T.: ‘Design of water cooled electric motors using CFD and thermography techniques’. Int. Conf. on Electrical Machines, Vilamoura, Portugal, 2008.
    8. 8)
      • 69. Vlach, R., Grepl, R., Krejci, P.: ‘Control of stator winding slot cooling by water using prediction of heating’. IEEE Int. Conf. Mechatronics (ICM), Kumamoto, 2007.
    9. 9)
      • 51. Mthombeni, T.L., Pillay, P.: ‘Physical basis for the variation of lamination core loss coefficients as a function of frequency and flux density’. Annual Conf. on IEEE Industrial Electronics, Paris, November 2006.
    10. 10)
      • 23. Krishnamurthy, M., Edrington, C.S., Emadi, A., et al: ‘Making the case for applications of switched reluctance motor technology in automotive products’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 659675.
    11. 11)
      • 85. Mellor, P.H., Roberts, D., Turner, D.: ‘Lumped parameter thermal model for electrical machines of TEFC design’. IEEE Proc. B-Electr. Power Appl., 1991, 138, (5), pp. 205218.
    12. 12)
      • 53. Ma, L., Sanada, M., Morimoto, S., et al: ‘Prediction of iron loss in rotating machines with rotational loss included’, IEEE Trans. Magn., 2003, 39, (4), pp. 20362041.
    13. 13)
      • 10. Bilgin, B., Magne, P., Malysz, P., et al: ‘Making the case for electrified transportation’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 417.
    14. 14)
      • 77. Guechi, M.R., Desevaux, P., Baucour, P., et al: ‘On the improvement of the thermal behavior of electric motors’. IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013.
    15. 15)
      • 37. Constantinides, S.: ‘The demand for rare earth materials in permanent magnets’. Arnold Magnetic Technologies. Available at: http://arnoldmagnetics.com/, [Accessed 15 July 2015].
    16. 16)
      • 125. Specht, A., Wallscheid, O., Böcker, J.: ‘Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise flux observer’. Int. Power Electronics Conf. (ECCE-Asia), Hiroshima, Japan, 2014.
    17. 17)
      • 17. Bennion, K., Cousineau, J.: ‘Sensitivity study of traction drive motor cooling’. IEEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, 2012.
    18. 18)
      • 13. Bilgin, B., Emadi, A.: ‘Electric motors in electrified transportation: a step toward achieving a sustainable and highly efficient transportation system’, IEEE Power Electron. Mag., 2014, 1, (2), pp. 1017.
    19. 19)
      • 58. Heyns, G.C., Wang, R.-J.: ‘Thermal analysis of a water-cooled interior permanent magnet traction machine’. IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, February 2013, pp. 416421.
    20. 20)
      • 60. Dessouky, Y.G., Williams, B.W., Fletcher, J.E.: ‘Cooling enhancement of electric motors’, IEE Proc. Electr. Power Appl., 1998, 145, (1), pp. 5760.
    21. 21)
      • 92. Shafaie, R., Kalantar, M., Gholami, A.: ‘Thermal analysis of 10-MW-class wind turbine HTS synchronous generator’, IEEE Trans. Appl. Supercond., 2014, 24, (2), pp. 9098.
    22. 22)
      • 28. Emadi, A.: ‘Energy-efficient motors’ (CRC Press, Boca Raton, FL, 2004).
    23. 23)
      • 52. Han, S., Jahns, T.M., Zhu, Z.Q.: ‘Analysis of rotor core eddy-current losses in interior permanent magnet synchronous machines’. Industry Applications Society Annual Meeting, Edmonton, Alta, October 2008.
    24. 24)
      • 97. Zhang, Y., Ruan, J., Huang, T., et al: ‘Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite-element analysis’, IEEE Trans. Magn., 2012, 48, (2), pp. 10471050.
    25. 25)
      • 84. El-Refaie, A.M.H.N.C.a.J.T.M.: ‘Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 303309.
    26. 26)
      • 78. Gilson, G.M., Pickering, S.J., Hann, D.B., et al: ‘Piezoelectric fan cooling: a novel high reliability electric machine thermal management solution’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 48414851.
    27. 27)
      • 4. Staton, D.: ‘Thermal Analysis of Traction Motors’. Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, 2014.
    28. 28)
      • 45. De Almeida, A.T., Ferreira, F.J.T.E.T.E., Fong, J.A.C.: ‘Standards for efficiency of electric motors’, IEEE Ind. Appl. Mag., 2011, 17, (1), pp. 1219.
    29. 29)
      • 88. Staton, D., Boglietti, A., Cavagnino, A.: ‘Solving the more difficult aspects of electric motor thermal analysis’. IEEE Int. Electric Machines and Drives Conf., 2003. IEMDC'03, Madison, 2003.
    30. 30)
      • 3. Bilgin, B., Sathyan, A.: ‘Fundamentals of electric machines’, in Advanced electric drive vehicles’ in Emadi, A. (Ed.), (CRC Press, Boca Raton, FL, 2014), pp. 107186.
    31. 31)
      • 36. NEOREC series neodymium iron boron magnet datasheet’. TDK Corporation, May 2011. Available at: http://tdk.co.jp/.
    32. 32)
      • 59. Miller, T.J.E.: ‘SPEED's electric machines’ (CD-Adapco, 2002).
    33. 33)
      • 9. Emadi, A., Ehsani, M., Miller, J.M.: ‘Vehicular electric power systems: land, sea, air, and space vehicles’ (Marcel Dekker Inc., New York, NY, 2004).
    34. 34)
      • 42. Standard Classification of Insulating Coatings for Electrical Steels by Composition, Relative Insulating Ability and Application’. American Society of Testing and Materials, ASTM A 976-13, 2015.
    35. 35)
      • 105. Schrittwieser, M., Marn, A., Farnleitner, E., et al: ‘Numerical analysis of heat transfer and flow of stator duct models’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 226233.
    36. 36)
      • 90. Mejuto, C.: ‘Improved lumped parameter thermal modelling of synchronous generators’. PhD thesis, The University of Edinburgh, 2010.
    37. 37)
      • 33. Beeckman, R.: ‘NEMA magnet wire thermal class ratings’. Essex Group, Inc. Available at: http://www.superioressex.com/. [Accessed August 2015].
    38. 38)
      • 22. Bennion, K., Cousineau, J., Moreno, G.: ‘Electric motor thermal management for electric traction drives’. SAE Thermal Management Systems Symp., Denver, CO, 2014.
    39. 39)
      • 72. Yang, Y., Schofield, N., Emadi, A.: ‘Double-rotor switched reluctance machine (DRSRM)’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 671680.
    40. 40)
      • 73. Rhebergen, C., Bilgin, B., Emadi, A., et al: ‘Enhancement of electric motor thermal management through axial cooling methods: a materials approach’. IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 2015.
    41. 41)
      • 104. Wrobel, R., Vainel, G., Copeland, C., et al: ‘Investigation of mechanical loss components and heat transfer in an axial-flux pm machine’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30003011.
    42. 42)
      • 111. Schrittwieser, M., Bíró, O., Farnleitner, E., et al: ‘Analysis of temperature distribution in the stator of large synchronous machines considering heat conduction and heat convection’, IEEE Trans. Magn., 2015, 51, (3), pp. 4953.
    43. 43)
      • 116. Yoheswaran, B., Pullen, K.R.: ‘Flow and convective heat transfer in disk-type electric machines with coolant flow’. Int. Conf. on Electrical Machines (ICEM), 2014.
    44. 44)
      • 70. Galea, M., Gerada, C., Raminosoa, T., et al: ‘A thermal improvement technique for the phase windings of electrical machines’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 7987.
    45. 45)
      • 21. Toliyat, H.A., Kliman, G.B.: ‘Handbook of electric motors’ (CRC Press, Boca Raton, FL, 2004).
    46. 46)
      • 120. Cavagnino, A., Tenconi, A., Vaschetto, S.: ‘Experimental characterization of a belt-driven multiphase induction machine for 48-V automotive applications: losses and temperatures assessments’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 13211330.
    47. 47)
      • 54. Ridge, A., McMahon, R., Kelly, H.P.: ‘Detailed thermal modelling of a tubular linear machine for marine renewable generation’. IEEE Int. Conf. on Industrial Technology, Cape Town, 2013.
    48. 48)
      • 80. Ponomarev, P., Polikarpova, M., Pyrhönen, J.: ‘Thermal modeling of directly-oil-cooled permanent magnet synchronous machine’. Int. Conf. on Electrical Machines (ICEM), Marseille, 2012.
    49. 49)
      • 11. Rogers, S.: ‘EV everywhere grand challenge, electric drive status and challenges’ (U. S. Department of Energy, Energy Efficiency & Renewable Energy, 2012).
    50. 50)
      • 102. Howey, D.A., Holmes, A.S., Pullen, K.R.: ‘Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17161723.
    51. 51)
      • 110. Nollau, A., Gerling, D.: ‘A new cooling approach for traction motors in hybrid drives’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2013.
    52. 52)
      • 12. Zhu, Z.Q., Howe, D.: ‘Electrical machines and drives for electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 746765.
    53. 53)
      • 107. Shanel, M., Pickering, S.J., Lampard, D.: ‘Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator’. IEEE Int. Conf. of Machines and Drives, 2003.
    54. 54)
      • 114. Polikarpova, M., Ponomarev, P., Lindh, P., et al: ‘Hybrid cooling method of axial-flux permanent-magnet machines for vehicle applications’, IEEE Trans. Ind. Electron, 2015, 62, (12), pp. 73827390.
    55. 55)
      • 18. Boglietti, A., Cavagnino, A., Staton, D.A., et al: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 871882.
    56. 56)
      • 96. Faiz, J., Ganji, B., Carstensen, C.E., et al: ‘Temperature rise analysis of switched reluctance motors due to electromagnetic losses’, IEEE Trans. Magn., 2009, 45, (7), pp. 29272934.
    57. 57)
      • 64. Nakahama, T., Suzuki, K., Hashidume, S., et al: ‘Cooling airflow in unidirectional ventilated open-type motor for electric vehicles’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 645651.
    58. 58)
      • 98. Marignetti, F., Colli, V.D., Coia, Y.: ‘Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 35913601.
    59. 59)
      • 113. Pechanek, R., Bouzek, L.: ‘Analyzing of two types water cooling electric motors using computational fluid dynamics’. Int. Power Electronics and Motion Control Conf. (EPE/PEMC), 2012.
    60. 60)
      • 93. Junak, J., Ombach, G., Staton, D.A.: ‘Permanent magnet DC motor brush transient thermal analysis’. 2008 Int. Conf. on Electrical Machines, Vilamoura, 2008.
    61. 61)
      • 14. Bennion, K.: ‘Electric Motor Thermal Management’. National Renewable Energy Laboratory, NREL Report No. PR-5400-50510, 2011.
    62. 62)
      • 121. Michalski, L.: ‘Temperature measurement’ (John Wiley & Sons, New York, 2001).
    63. 63)
      • 50. Nalakath, S., Preindl, M., Yang, Y., et al: ‘Modeling and analysis of core losses of an IPM magnet machine for online estimation purposes’. Annual Conf. of IEEE Industrial Electronics Society, Yokohama, Japan, 2015.
    64. 64)
      • 109. Ujiie, R., Arlitt, R., Etoh, H.: ‘Application of computational fluid dynamics (CFD) on ventilation-cooling optimization of electrical machines’. Review Energy Technologies Generation, Transmission and Distribution of Electric and Thermal Energy, 2006.
    65. 65)
      • 89. Illiano, E.: ‘Design of a highly efficient brushless current excited synchronous motor for automotive purposes’. PhD thesis, ETH, Zurich, 2014.
    66. 66)
      • 75. Boglietti, A., Cavagnino, A.: ‘Analysis of the endwinding cooling effects in TEFC induction motors’, IEEE Trans. Ind. Appl., 2007, 43, (5), pp. 12141222.
    67. 67)
      • 16. Howey, D.A., Childs, P.R.N., Holmes, A.S.: ‘Air-gap convection in rotating electrical machines’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 13671375.
    68. 68)
      • 83. Lindström, J.: ‘Development of an experimental permanent-magnet motor drive’ (Department of Electric Power Engineering, Göteborg, 1999).
    69. 69)
      • 55. Rasilo, P., Belahcen, A., Arkkio, A.: ‘Importance of iron-loss modeling in modelling in simulation of wound-field synchronous machines’, IEEE Trans. Magn., 2012, 48, (9), pp. 24952504.
    70. 70)
      • 38. Trout, S.R.: ‘Material selection of permanent magnets, considering the thermal properties correctly’. Proc. the Electric Manufacturing and Coil Winding Conf., Cincinnati, OH, October 2001.
    71. 71)
      • 106. Huang, Z., Marquez, F., Alakula, M., et al: ‘Characterization and application of forced cooling channels for traction motors in HEVs’. 20th Int. Conf. on Electrical Machines (ICEM), 2012.
    72. 72)
      • 94. Cossar, C., McGilp, M., Omori, S., et al: ‘Analytical thermal models for small induction motors’. 18th Int. Conf. on Electrical Machines, Vilamoura, 2008.
    73. 73)
      • 43. ‘DuPONT NOMEX Paper Type 410’, DuPONT. Available at: http://www.dupont.com, [Accessed August 2015].
    74. 74)
      • 112. Jungreuthmayer, C., Bäuml, T., Winter, O., et al: ‘A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 45684578.
    75. 75)
      • 24. Senda, K., Namikawa, M., Hayakawa, Y.: ‘Electrical steels for advanced automobiles – core materials for motors, generators and high-frequency reactors’. JFE Steel Tech. Rep., Tokyo, Japan, 2004.
    76. 76)
      • 126. Reigosa, D.D., Briz, F., Garcia, P., et al: ‘Magnet temperature estimation in surface PM machines using high-frequency signal injection’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 14681475.
    77. 77)
      • 76. Staton, D.A., Popescu, M., Hawkins, D., et al: ‘Influence of different end region cooling arrangements on end-winding heat transfer coefficients in electrical machines’. IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010.
    78. 78)
      • 82. Kim, D.J., Jung, J.W., Kwon, S.O., et al: ‘Thermal Analysis using Equivalent Thermal Network in IPMSM’. 2008 Int. Conf. on Electric Machines and Systems, Wuhan, China, 2008.
    79. 79)
      • 122. Ganchev, M., Kubicek, B., Kappeler, H.: ‘Rotor temperature monitoring system’. Int. Conf. on Electrical Machines (ICEM), 2010.
    80. 80)
      • 41. Selection of Electrical Steels for Magnetic Cores’. AK Steel. Available at: http://aksteel.com/, [Accessed 16 July 2015].
    81. 81)
      • 29. Stone, G.C., Culbert, I., Boulter, W.A., et al: ‘Rotating machine insulation systems’ ‘Electrical Insulation for Rotating Machines’ (IEEE Press, Hoboken, New Jersey, USA, 2014).
    82. 82)
      • 40. Takahashi, N., Morishita, M., Miyagi, D., et al: ‘Examination of magnetic properties of magnetic materials at high temperature using a ring specimen’, IEEE Trans. Magn., 2010, 46, (2), pp. 548551.
    83. 83)
      • 31. Marquez, E., Nelson, D.: ‘Development of current squared – time curves for simplified wire size selection for electric traction systems in automotive applications’. IEEE Transportation Electrification Conf. and Expo, Dearborn, MI, June 2015.
    84. 84)
      • 123. Mejuto, C., Mueller, M., Shanel, M., et al: ‘Improved synchronous machine thermalmodelling’. Int. Conf. on Electrical Machines (ICEM), 2008.
    85. 85)
      • 35. Mechler, G.C.: ‘Manufacturing and cost analysis for aluminum and copper die cast induction motors for GM's powertrain and R&D divisions’. M.S. thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2010.
    86. 86)
      • 68. Huang, Z., Nategh, S., Lassila, V., et al: ‘Direct oil cooling of traction motors in hybrid drives’. IEEE Int. Electric Vehicle Conf. (IEVC), Greenville, SC, 2012.
    87. 87)
      • 79. Karimi-Moghaddam, G., Gould, R.D., Bhattacharya, S., et al: ‘Thermomagnetic liquid cooling: A novel electric machine thermal management solution’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014.
    88. 88)
      • 71. Yang, Y.: ‘Double-rotor switched reluctance machine for integrated electro-mechanical transmission in hybrid electric vehicles’. PhD dissertation, McMaster University, Hamilton, ON, Canada, February 2014.
    89. 89)
      • 15. Liao, C.M., Chen, C.L., Katcher, T.: ‘Thermal analysis for design of high performance motors’. Int. Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Seattle, WA, 1998.
    90. 90)
      • 47. Sudhoff, S.: ‘AC conductor losses in power magnetic devices: a multi-objective design approach’ (Wiley-IEEE Press, 2014).
    91. 91)
      • 20. Yang, R., Yang, Y., Bilgin, B., et al: ‘Analysis of interior permanent magnet machines with grain boundary diffusion processed magnet’. IET Int. Conf. on Power Electronics, Machines, and Drives (PEMD 2016), Glasgow, Scotland, 2016.
    92. 92)
      • 118. Boglietti, A., Cavagnino, A., Staton, D.A., et al: ‘End space heat transfer coefficient determination for different induction motor enclosure types’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 929937.
    93. 93)
      • 124. Stipetic, S., Kovacic, M., Hanic, Z., et al: ‘Measurement of excitation winding temperature on synchronous generator in rotation using infrared thermography’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 22882298.
    94. 94)
      • 63. Li, H.: ‘Cooling of a permanent magnet electric motor with a centrifugal impeller’, Int. J. Heat Mass Transf., 2010, 53, (4), pp. 797810.
    95. 95)
      • 87. Sali, N.V.a.K.P.: ‘Lumped parameter analysis of SMPM synchronous electric motor used for hybrid electric vehicle traction drive’, IOSR J. Mechan. Civil Eng., 2014, 2014, pp. 4247.
    96. 96)
      • 5. Yang, Y., Arshad-Ali, K., Roeleveld, J., et al: ‘State-of-the-art electrified powertrains: hybrid, plug-in hybrid, and electric vehicles’, Int. J. Powertrains, 2016, 5, (1), pp. 128.
    97. 97)
      • 56. Deeb, R., Janda, M., Makki, Z.: ‘Prediction of eddy current losses of surface mounted permanent magnet servo motor’. Int. Conf. on Electrical Machines, Marseille, September 2012.
    98. 98)
      • 115. Boglietti, A., Cavagnino, A., Staton, D.A.: ‘Determination of critical parameters in electrical machine thermal models’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 11501159.
    99. 99)
      • 100. Srinivas, K.N., Arumugam, R.: ‘Analysis and characterization of switched reluctance motors: part ii - flow, thermal and vibration analyses’, IEEE Trans. Magn., 2005, 41, (4), pp. 13211332.
    100. 100)
      • 101. Pickering, S.J., Lampard, D., Shanel, M.: ‘Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine’. Int. Conf. Power Electronics, Machines and Drives, June 2002.
    101. 101)
      • 103. Connor, P.H., Pickering, S.J., Gerada, C., et al: ‘Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management’, IET Electr. Power Appl., 2013, 7, (3), pp. 231236.
    102. 102)
      • 108. Maynes, B.D.J., Kee, R.J., Tindall, C.E., et al: ‘Simulation of airflow and heat transfer in small alternators using CFD’. IEEE Proc. Electrical Power Applications, 2003.
    103. 103)
      • 61. Lee, Y., Hahn, S.Y., Kauh, S.K.: ‘Thermal analysis of induction motor with forced cooling channels’, IEEE Trans. Magn., 2000, 36, (4), pp. 13941397, Part 1.
    104. 104)
      • 127. Wallscheid, O., Böcker, J.: ‘Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors’, IEEE Trans. Energy Convers., 2016, 36, (1), pp. 354365.
    105. 105)
      • 34. Magnet wire insulation guide’. MWS Wire Industries. Available at: http://mwswire.com/, [Accessed 2016].
    106. 106)
      • 81. Nollau, A., Gerling, D.: ‘Novel cooling methods using flux-barriers’. Int. Conf. on Electrical Machines (ICEM), Berlin, 2014.
    107. 107)
      • 30. ‘National Electrical Manufacturers Association Standard’. ANSI/NEMA MW 1000-2015, 2015.
    108. 108)
      • 7. Yang, Y., Emadi, A.: ‘Integrated electro-mechanical transmission systems in hybrid electric vehicles’. 2011 IEEE Vehicle Power and Propulsion Conf., Chicago, IL, September 2011.
    109. 109)
      • 25. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    110. 110)
      • 86. Nategh, S., Wallmark, O., Leksell, M., et al: ‘Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 477488.
    111. 111)
      • 57. Zhu, Z.Q., Ng, K., Schofield, N., et al: ‘Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets’, IEE Proc. Electr. Power Appl., 2004, 151, (6), pp. 641650.
    112. 112)
      • 26. Nategh, S., Krings, A., Huang, Z., et al: ‘Evaluation of stator and rotor lamination materials for thermal management of a PMaSRM’. Int. Conf. on Electrical Machines (ICEM), Marseille, 2012.
    113. 113)
      • 117. Wrobel, R., Mellor, P.H., Holliday, D.: ‘Thermal modeling of a segmented stator winding design’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 20232030.
    114. 114)
      • 91. Nategh, S.: ‘Thermal analysis and management of high-performance electrical machines’. PhD thesis, KTH, 2013.
    115. 115)
      • 8. Yang, Y., Schofield, N., Emadi, A.: ‘Integrated electro-mechanical double-rotor compound hybrid transmissions for hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 46874699.
    116. 116)
      • 62. Farsane, K., Desevaux, P., Panday, P.K.: ‘Experimental study of the cooling of a closed type electric motor’, Appl. Therm. Eng., 2000, 20, (14), pp. 13211334.
    117. 117)
      • 119. Yang, Y., Schofield, N., Emadi, A.: ‘Double-rotor switched reluctance machine design, simulations, and validations’, IET Electr. Syst. Transp., 2016, 6, (2), pp. 171175.
    118. 118)
      • 27. Narumanchi, S.: ‘Thermal management of power electronics and electric motors for electric-drive vehicles’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014.
    119. 119)
      • 66. Karim, Z.A.A., Yusoff, A.H.M.: ‘Cooling system for electric motor of an electric vehicle propulsion’, Adv. Mater. Res., 2014, 903, pp. 209214.
    120. 120)
      • 65. Mizuno, S., Noda, S., Matsushita, M., et al: ‘Development of a totally enclosed fan-cooled traction motor’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 15081514.
    121. 121)
      • 74. Semidey, S.A., Mayor, J.R.: ‘Experimentation of an electric machine technology demonstrator incorporating direct winding heat exchangers’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 57715778.
    122. 122)
      • 48. Demetriades, G.D., De La Parra, H.Z., Andersson, E., et al: ‘A real-time thermal model of a permanent-magnet synchronous motor’, IEEE Trans. Power Elctron., 2010, 25, (2), pp. 463474.
    123. 123)
      • 95. Tang, Y.: ‘Characterization, numerical analysis, and design of switched reluctance motors’, IEEE Trans. Ind. Appl., 1997, 33, (6), pp. 15441552.
    124. 124)
      • 19. Moreno, G., Narumanchi, S., Bennion, K., et al: ‘Gaining traction: thermal management and reliability of automotive electric traction-drive systems’, IEEE Electrification Mag., 2014, 2, (2), pp. 4249.
    125. 125)
      • 49. Zhang, Y., Cheng, M.C., Pillay, P.: ‘Magnetic characteristics and excess eddy current losses’. Industry Applications Society Annual Meeting, Houston, TX, 2009.
    126. 126)
      • 2. Chapman, S.J.: ‘Electric machinery fundamentals’ (McGraw-Hill, New York, NY, 2005, 4th edn.).
    127. 127)
      • 46. Nalakath, S., Preindl, M., Bilgin, B., et al: ‘Modeling and analysis of AC resistance of a permanent magnet machine for online estimation purposes’. IEEE Energy Conversion Congress and Exposition, Montreal, QC, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0050
Loading

Related content

content/journals/10.1049/iet-est.2015.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading