http://iet.metastore.ingenta.com
1887

Thermal management of electric machines

Thermal management of electric machines

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electrical Systems in Transportation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Electric machines have broadly been used in many industries including the transportation industry. With the evolving trend of electrification in transportation, electric machines with higher power density and higher efficiency are demanded and, thus, more stringent thermal management requirements are needed for electrified vehicle applications. This study comprehensively presents various important aspects of thermal management in electric machines with the main focus on transportation applications. Design considerations, challenges, and methods for enhanced thermal management are discussed. Fundamental thermal properties of common materials are presented and sources of losses in various parts of machines are explained. Furthermore, typical cooling techniques and thermal analysis approaches for electric machines are reviewed in detail. This study will serve as a reference guideline for machine designers, who are interested in thermal management, and for thermal researchers working on electric machines.

References

    1. 1)
      • I. Boldea , L.N. Tutelea . (2009)
        1. Boldea, I., Tutelea, L.N.: ‘Electric machines: steady state, transients, and design with MATLAB’ (CRC Press, Boca Raton, FL, 2009).
        .
    2. 2)
      • S.J. Chapman . (2005)
        2. Chapman, S.J.: ‘Electric machinery fundamentals’ (McGraw-Hill, New York, NY, 2005, 4th edn.).
        .
    3. 3)
      • B. Bilgin , A. Sathyan . (2014)
        3. Bilgin, B., Sathyan, A.: ‘Fundamentals of electric machines’, in Advanced electric drive vehicles’ in Emadi, A. (Ed.), (CRC Press, Boca Raton, FL, 2014), pp. 107186.
        .
    4. 4)
      • D. Staton .
        4. Staton, D.: ‘Thermal Analysis of Traction Motors’. Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, 2014.
        . Transportation Electrification Conf. and Expo (ITEC)
    5. 5)
      • Y. Yang , K. Arshad-Ali , J. Roeleveld .
        5. Yang, Y., Arshad-Ali, K., Roeleveld, J., et al: ‘State-of-the-art electrified powertrains: hybrid, plug-in hybrid, and electric vehicles’, Int. J. Powertrains, 2016, 5, (1), pp. 128.
        . Int. J. Powertrains , 1 , 1 - 28
    6. 6)
      • R. Hou , Y. Yang , A. Emadi .
        6. Hou, R., Yang, Y., Emadi, A.: ‘Hybrid electric locomotive powertrains’. IEEE Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 2014.
        . IEEE Transportation Electrification Asia-Pacific (ITEC Asia-Pacific)
    7. 7)
      • Y. Yang , A. Emadi .
        7. Yang, Y., Emadi, A.: ‘Integrated electro-mechanical transmission systems in hybrid electric vehicles’. 2011 IEEE Vehicle Power and Propulsion Conf., Chicago, IL, September 2011.
        . 2011 IEEE Vehicle Power and Propulsion Conf.
    8. 8)
      • Y. Yang , N. Schofield , A. Emadi .
        8. Yang, Y., Schofield, N., Emadi, A.: ‘Integrated electro-mechanical double-rotor compound hybrid transmissions for hybrid electric vehicles’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 46874699.
        . IEEE Trans. Veh. Technol. , 6 , 4687 - 4699
    9. 9)
      • A. Emadi , M. Ehsani , J.M. Miller . (2004)
        9. Emadi, A., Ehsani, M., Miller, J.M.: ‘Vehicular electric power systems: land, sea, air, and space vehicles’ (Marcel Dekker Inc., New York, NY, 2004).
        .
    10. 10)
      • B. Bilgin , P. Magne , P. Malysz .
        10. Bilgin, B., Magne, P., Malysz, P., et al: ‘Making the case for electrified transportation’, IEEE Trans. Transp. Electrification, 2015, 1, (1), pp. 417.
        . IEEE Trans. Transp. Electrification , 1 , 4 - 17
    11. 11)
      • S. Rogers . (2012)
        11. Rogers, S.: ‘EV everywhere grand challenge, electric drive status and challenges’ (U. S. Department of Energy, Energy Efficiency & Renewable Energy, 2012).
        .
    12. 12)
      • Z.Q. Zhu , D. Howe .
        12. Zhu, Z.Q., Howe, D.: ‘Electrical machines and drives for electric, hybrid, and fuel cell vehicles’, Proc. IEEE, 2007, 95, (4), pp. 746765.
        . Proc. IEEE , 4 , 746 - 765
    13. 13)
      • B. Bilgin , A. Emadi .
        13. Bilgin, B., Emadi, A.: ‘Electric motors in electrified transportation: a step toward achieving a sustainable and highly efficient transportation system’, IEEE Power Electron. Mag., 2014, 1, (2), pp. 1017.
        . IEEE Power Electron. Mag. , 2 , 10 - 17
    14. 14)
      • K. Bennion .
        14. Bennion, K.: ‘Electric Motor Thermal Management’. National Renewable Energy Laboratory, NREL Report No. PR-5400-50510, 2011.
        . National Renewable Energy Laboratory
    15. 15)
      • C.M. Liao , C.L. Chen , T. Katcher .
        15. Liao, C.M., Chen, C.L., Katcher, T.: ‘Thermal analysis for design of high performance motors’. Int. Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Seattle, WA, 1998.
        . Int. Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems
    16. 16)
      • D.A. Howey , P.R.N. Childs , A.S. Holmes .
        16. Howey, D.A., Childs, P.R.N., Holmes, A.S.: ‘Air-gap convection in rotating electrical machines’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 13671375.
        . IEEE Trans. Ind. Electron. , 3 , 1367 - 1375
    17. 17)
      • K. Bennion , J. Cousineau .
        17. Bennion, K., Cousineau, J.: ‘Sensitivity study of traction drive motor cooling’. IEEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, 2012.
        . IEEE Transportation Electrification Conf. and Expo (ITEC)
    18. 18)
      • A. Boglietti , A. Cavagnino , D.A. Staton .
        18. Boglietti, A., Cavagnino, A., Staton, D.A., et al: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 871882.
        . IEEE Trans. Ind. Electron. , 3 , 871 - 882
    19. 19)
      • G. Moreno , S. Narumanchi , K. Bennion .
        19. Moreno, G., Narumanchi, S., Bennion, K., et al: ‘Gaining traction: thermal management and reliability of automotive electric traction-drive systems’, IEEE Electrification Mag., 2014, 2, (2), pp. 4249.
        . IEEE Electrification Mag. , 2 , 42 - 49
    20. 20)
      • R. Yang , Y. Yang , B. Bilgin .
        20. Yang, R., Yang, Y., Bilgin, B., et al: ‘Analysis of interior permanent magnet machines with grain boundary diffusion processed magnet’. IET Int. Conf. on Power Electronics, Machines, and Drives (PEMD 2016), Glasgow, Scotland, 2016.
        . IET Int. Conf. on Power Electronics, Machines, and Drives (PEMD 2016)
    21. 21)
      • H.A. Toliyat , G.B. Kliman . (2004)
        21. Toliyat, H.A., Kliman, G.B.: ‘Handbook of electric motors’ (CRC Press, Boca Raton, FL, 2004).
        .
    22. 22)
      • K. Bennion , J. Cousineau , G. Moreno .
        22. Bennion, K., Cousineau, J., Moreno, G.: ‘Electric motor thermal management for electric traction drives’. SAE Thermal Management Systems Symp., Denver, CO, 2014.
        . SAE Thermal Management Systems Symp.
    23. 23)
      • M. Krishnamurthy , C.S. Edrington , A. Emadi .
        23. Krishnamurthy, M., Edrington, C.S., Emadi, A., et al: ‘Making the case for applications of switched reluctance motor technology in automotive products’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 659675.
        . IEEE Trans. Power Electron. , 3 , 659 - 675
    24. 24)
      • K. Senda , M. Namikawa , Y. Hayakawa .
        24. Senda, K., Namikawa, M., Hayakawa, Y.: ‘Electrical steels for advanced automobiles – core materials for motors, generators and high-frequency reactors’. JFE Steel Tech. Rep., Tokyo, Japan, 2004.
        . JFE Steel Tech. Rep.
    25. 25)
      • D. Gerada , A. Mebarki , N.L. Brown .
        25. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
        . IEEE Trans. Ind. Electron. , 6 , 2946 - 2959
    26. 26)
      • S. Nategh , A. Krings , Z. Huang .
        26. Nategh, S., Krings, A., Huang, Z., et al: ‘Evaluation of stator and rotor lamination materials for thermal management of a PMaSRM’. Int. Conf. on Electrical Machines (ICEM), Marseille, 2012.
        . Int. Conf. on Electrical Machines (ICEM)
    27. 27)
      • S. Narumanchi .
        27. Narumanchi, S.: ‘Thermal management of power electronics and electric motors for electric-drive vehicles’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014.
        . IEEE Energy Conversion Congress and Exposition (ECCE)
    28. 28)
      • A. Emadi . (2004)
        28. Emadi, A.: ‘Energy-efficient motors’ (CRC Press, Boca Raton, FL, 2004).
        .
    29. 29)
      • G.C. Stone , I. Culbert , W.A. Boulter . (2014)
        29. Stone, G.C., Culbert, I., Boulter, W.A., et al: ‘Rotating machine insulation systems’ ‘Electrical Insulation for Rotating Machines’ (IEEE Press, Hoboken, New Jersey, USA, 2014).
        .
    30. 30)
      • (2015)
        30. ‘National Electrical Manufacturers Association Standard’. ANSI/NEMA MW 1000-2015, 2015.
        .
    31. 31)
      • E. Marquez , D. Nelson .
        31. Marquez, E., Nelson, D.: ‘Development of current squared – time curves for simplified wire size selection for electric traction systems in automotive applications’. IEEE Transportation Electrification Conf. and Expo, Dearborn, MI, June 2015.
        . IEEE Transportation Electrification Conf. and Expo
    32. 32)
      • 32. Magnet Wire/Winding Wire Product Application and Packaging Data’. Superior Essex, 1999. Available at: http://www.superioressex.com/.
        .
    33. 33)
      • R. Beeckman .
        33. Beeckman, R.: ‘NEMA magnet wire thermal class ratings’. Essex Group, Inc. Available at: http://www.superioressex.com/. [Accessed August 2015].
        .
    34. 34)
      • 34. Magnet wire insulation guide’. MWS Wire Industries. Available at: http://mwswire.com/, [Accessed 2016].
        .
    35. 35)
      • G.C. Mechler .
        35. Mechler, G.C.: ‘Manufacturing and cost analysis for aluminum and copper die cast induction motors for GM's powertrain and R&D divisions’. M.S. thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 2010.
        . M.S. thesis, Department of Materials Science and Engineering
    36. 36)
      • 36. NEOREC series neodymium iron boron magnet datasheet’. TDK Corporation, May 2011. Available at: http://tdk.co.jp/.
        .
    37. 37)
      • S. Constantinides .
        37. Constantinides, S.: ‘The demand for rare earth materials in permanent magnets’. Arnold Magnetic Technologies. Available at: http://arnoldmagnetics.com/, [Accessed 15 July 2015].
        .
    38. 38)
      • S.R. Trout .
        38. Trout, S.R.: ‘Material selection of permanent magnets, considering the thermal properties correctly’. Proc. the Electric Manufacturing and Coil Winding Conf., Cincinnati, OH, October 2001.
        . Proc. the Electric Manufacturing and Coil Winding Conf.
    39. 39)
      • W. Tong . (2014)
        39. Tong, W.: ‘Mechanical design of electric motors’ (CRC Press, Boca Raton, FL, 2014).
        .
    40. 40)
      • N. Takahashi , M. Morishita , D. Miyagi .
        40. Takahashi, N., Morishita, M., Miyagi, D., et al: ‘Examination of magnetic properties of magnetic materials at high temperature using a ring specimen’, IEEE Trans. Magn., 2010, 46, (2), pp. 548551.
        . IEEE Trans. Magn. , 2 , 548 - 551
    41. 41)
      • 41. Selection of Electrical Steels for Magnetic Cores’. AK Steel. Available at: http://aksteel.com/, [Accessed 16 July 2015].
        .
    42. 42)
      • 42. Standard Classification of Insulating Coatings for Electrical Steels by Composition, Relative Insulating Ability and Application’. American Society of Testing and Materials, ASTM A 976-13, 2015.
        .
    43. 43)
      • 43. ‘DuPONT NOMEX Paper Type 410’, DuPONT. Available at: http://www.dupont.com, [Accessed August 2015].
        .
    44. 44)
      • C.C. Chang , C.H. Cheng , M.T. Ke .
        44. Chang, C.C., Cheng, C.H., Ke, M.T., et al: ‘Experimental and numerical investigations of air cooling for a large-scale motor’, Int. J. Rotating Mach., 2009, 2009, pp. 17.
        . Int. J. Rotating Mach. , 1 - 7
    45. 45)
      • A.T. De Almeida , F.J.T.E.T.E. Ferreira , J.A.C. Fong .
        45. De Almeida, A.T., Ferreira, F.J.T.E.T.E., Fong, J.A.C.: ‘Standards for efficiency of electric motors’, IEEE Ind. Appl. Mag., 2011, 17, (1), pp. 1219.
        . IEEE Ind. Appl. Mag. , 1 , 12 - 19
    46. 46)
      • S. Nalakath , M. Preindl , B. Bilgin .
        46. Nalakath, S., Preindl, M., Bilgin, B., et al: ‘Modeling and analysis of AC resistance of a permanent magnet machine for online estimation purposes’. IEEE Energy Conversion Congress and Exposition, Montreal, QC, 2015.
        . IEEE Energy Conversion Congress and Exposition
    47. 47)
      • S. Sudhoff . (2014)
        47. Sudhoff, S.: ‘AC conductor losses in power magnetic devices: a multi-objective design approach’ (Wiley-IEEE Press, 2014).
        .
    48. 48)
      • G.D. Demetriades , H.Z. De La Parra , E. Andersson .
        48. Demetriades, G.D., De La Parra, H.Z., Andersson, E., et al: ‘A real-time thermal model of a permanent-magnet synchronous motor’, IEEE Trans. Power Elctron., 2010, 25, (2), pp. 463474.
        . IEEE Trans. Power Elctron. , 2 , 463 - 474
    49. 49)
      • Y. Zhang , M.C. Cheng , P. Pillay .
        49. Zhang, Y., Cheng, M.C., Pillay, P.: ‘Magnetic characteristics and excess eddy current losses’. Industry Applications Society Annual Meeting, Houston, TX, 2009.
        . Industry Applications Society Annual Meeting
    50. 50)
      • S. Nalakath , M. Preindl , Y. Yang .
        50. Nalakath, S., Preindl, M., Yang, Y., et al: ‘Modeling and analysis of core losses of an IPM magnet machine for online estimation purposes’. Annual Conf. of IEEE Industrial Electronics Society, Yokohama, Japan, 2015.
        . Annual Conf. of IEEE Industrial Electronics Society
    51. 51)
      • T.L. Mthombeni , P. Pillay .
        51. Mthombeni, T.L., Pillay, P.: ‘Physical basis for the variation of lamination core loss coefficients as a function of frequency and flux density’. Annual Conf. on IEEE Industrial Electronics, Paris, November 2006.
        . Annual Conf. on IEEE Industrial Electronics
    52. 52)
      • S. Han , T.M. Jahns , Z.Q. Zhu .
        52. Han, S., Jahns, T.M., Zhu, Z.Q.: ‘Analysis of rotor core eddy-current losses in interior permanent magnet synchronous machines’. Industry Applications Society Annual Meeting, Edmonton, Alta, October 2008.
        . Industry Applications Society Annual Meeting
    53. 53)
      • L. Ma , M. Sanada , S. Morimoto .
        53. Ma, L., Sanada, M., Morimoto, S., et al: ‘Prediction of iron loss in rotating machines with rotational loss included’, IEEE Trans. Magn., 2003, 39, (4), pp. 20362041.
        . IEEE Trans. Magn. , 4 , 2036 - 2041
    54. 54)
      • A. Ridge , R. McMahon , H.P. Kelly .
        54. Ridge, A., McMahon, R., Kelly, H.P.: ‘Detailed thermal modelling of a tubular linear machine for marine renewable generation’. IEEE Int. Conf. on Industrial Technology, Cape Town, 2013.
        . IEEE Int. Conf. on Industrial Technology
    55. 55)
      • P. Rasilo , A. Belahcen , A. Arkkio .
        55. Rasilo, P., Belahcen, A., Arkkio, A.: ‘Importance of iron-loss modeling in modelling in simulation of wound-field synchronous machines’, IEEE Trans. Magn., 2012, 48, (9), pp. 24952504.
        . IEEE Trans. Magn. , 9 , 2495 - 2504
    56. 56)
      • R. Deeb , M. Janda , Z. Makki .
        56. Deeb, R., Janda, M., Makki, Z.: ‘Prediction of eddy current losses of surface mounted permanent magnet servo motor’. Int. Conf. on Electrical Machines, Marseille, September 2012.
        . Int. Conf. on Electrical Machines
    57. 57)
      • Z.Q. Zhu , K. Ng , N. Schofield .
        57. Zhu, Z.Q., Ng, K., Schofield, N., et al: ‘Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets’, IEE Proc. Electr. Power Appl., 2004, 151, (6), pp. 641650.
        . IEE Proc. Electr. Power Appl. , 6 , 641 - 650
    58. 58)
      • G.C. Heyns , R.-J. Wang .
        58. Heyns, G.C., Wang, R.-J.: ‘Thermal analysis of a water-cooled interior permanent magnet traction machine’. IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, February 2013, pp. 416421.
        . IEEE Int. Conf. on Industrial Technology (ICIT) , 416 - 421
    59. 59)
      • T.J.E. Miller . (2002)
        59. Miller, T.J.E.: ‘SPEED's electric machines’ (CD-Adapco, 2002).
        .
    60. 60)
      • Y.G. Dessouky , B.W. Williams , J.E. Fletcher .
        60. Dessouky, Y.G., Williams, B.W., Fletcher, J.E.: ‘Cooling enhancement of electric motors’, IEE Proc. Electr. Power Appl., 1998, 145, (1), pp. 5760.
        . IEE Proc. Electr. Power Appl. , 1 , 57 - 60
    61. 61)
      • Y. Lee , S.Y. Hahn , S.K. Kauh .
        61. Lee, Y., Hahn, S.Y., Kauh, S.K.: ‘Thermal analysis of induction motor with forced cooling channels’, IEEE Trans. Magn., 2000, 36, (4), pp. 13941397, Part 1.
        . IEEE Trans. Magn. , 4 , 1394 - 1397
    62. 62)
      • K. Farsane , P. Desevaux , P.K. Panday .
        62. Farsane, K., Desevaux, P., Panday, P.K.: ‘Experimental study of the cooling of a closed type electric motor’, Appl. Therm. Eng., 2000, 20, (14), pp. 13211334.
        . Appl. Therm. Eng. , 14 , 1321 - 1334
    63. 63)
      • H. Li .
        63. Li, H.: ‘Cooling of a permanent magnet electric motor with a centrifugal impeller’, Int. J. Heat Mass Transf., 2010, 53, (4), pp. 797810.
        . Int. J. Heat Mass Transf. , 4 , 797 - 810
    64. 64)
      • T. Nakahama , K. Suzuki , S. Hashidume .
        64. Nakahama, T., Suzuki, K., Hashidume, S., et al: ‘Cooling airflow in unidirectional ventilated open-type motor for electric vehicles’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 645651.
        . IEEE Trans. Energy Convers. , 3 , 645 - 651
    65. 65)
      • S. Mizuno , S. Noda , M. Matsushita .
        65. Mizuno, S., Noda, S., Matsushita, M., et al: ‘Development of a totally enclosed fan-cooled traction motor’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 15081514.
        . IEEE Trans. Ind. Appl. , 4 , 1508 - 1514
    66. 66)
      • Z.A.A. Karim , A.H.M. Yusoff .
        66. Karim, Z.A.A., Yusoff, A.H.M.: ‘Cooling system for electric motor of an electric vehicle propulsion’, Adv. Mater. Res., 2014, 903, pp. 209214.
        . Adv. Mater. Res. , 209 - 214
    67. 67)
      • S.S. Borges , C.A. Cezario , T.T. Kunz .
        67. Borges, S.S., Cezario, C.A., Kunz, T.T.: ‘Design of water cooled electric motors using CFD and thermography techniques’. Int. Conf. on Electrical Machines, Vilamoura, Portugal, 2008.
        . Int. Conf. on Electrical Machines
    68. 68)
      • Z. Huang , S. Nategh , V. Lassila .
        68. Huang, Z., Nategh, S., Lassila, V., et al: ‘Direct oil cooling of traction motors in hybrid drives’. IEEE Int. Electric Vehicle Conf. (IEVC), Greenville, SC, 2012.
        . IEEE Int. Electric Vehicle Conf. (IEVC)
    69. 69)
      • R. Vlach , R. Grepl , P. Krejci .
        69. Vlach, R., Grepl, R., Krejci, P.: ‘Control of stator winding slot cooling by water using prediction of heating’. IEEE Int. Conf. Mechatronics (ICM), Kumamoto, 2007.
        . IEEE Int. Conf. Mechatronics (ICM)
    70. 70)
      • M. Galea , C. Gerada , T. Raminosoa .
        70. Galea, M., Gerada, C., Raminosoa, T., et al: ‘A thermal improvement technique for the phase windings of electrical machines’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 7987.
        . IEEE Trans. Ind. Appl. , 1 , 79 - 87
    71. 71)
      • Y. Yang .
        71. Yang, Y.: ‘Double-rotor switched reluctance machine for integrated electro-mechanical transmission in hybrid electric vehicles’. PhD dissertation, McMaster University, Hamilton, ON, Canada, February 2014.
        . PhD dissertation
    72. 72)
      • Y. Yang , N. Schofield , A. Emadi .
        72. Yang, Y., Schofield, N., Emadi, A.: ‘Double-rotor switched reluctance machine (DRSRM)’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 671680.
        . IEEE Trans. Energy Convers. , 2 , 671 - 680
    73. 73)
      • C. Rhebergen , B. Bilgin , A. Emadi .
        73. Rhebergen, C., Bilgin, B., Emadi, A., et al: ‘Enhancement of electric motor thermal management through axial cooling methods: a materials approach’. IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 2015.
        . IEEE Energy Conversion Congress and Exposition (ECCE)
    74. 74)
      • S.A. Semidey , J.R. Mayor .
        74. Semidey, S.A., Mayor, J.R.: ‘Experimentation of an electric machine technology demonstrator incorporating direct winding heat exchangers’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 57715778.
        . IEEE Trans. Ind. Electron. , 10 , 5771 - 5778
    75. 75)
      • A. Boglietti , A. Cavagnino .
        75. Boglietti, A., Cavagnino, A.: ‘Analysis of the endwinding cooling effects in TEFC induction motors’, IEEE Trans. Ind. Appl., 2007, 43, (5), pp. 12141222.
        . IEEE Trans. Ind. Appl. , 5 , 1214 - 1222
    76. 76)
      • D.A. Staton , M. Popescu , D. Hawkins .
        76. Staton, D.A., Popescu, M., Hawkins, D., et al: ‘Influence of different end region cooling arrangements on end-winding heat transfer coefficients in electrical machines’. IEEE Energy Conversion Congress and Exposition, Atlanta, GA, 2010.
        . IEEE Energy Conversion Congress and Exposition
    77. 77)
      • M.R. Guechi , P. Desevaux , P. Baucour .
        77. Guechi, M.R., Desevaux, P., Baucour, P., et al: ‘On the improvement of the thermal behavior of electric motors’. IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013.
        . IEEE Energy Conversion Congress and Exposition
    78. 78)
      • G.M. Gilson , S.J. Pickering , D.B. Hann .
        78. Gilson, G.M., Pickering, S.J., Hann, D.B., et al: ‘Piezoelectric fan cooling: a novel high reliability electric machine thermal management solution’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 48414851.
        . IEEE Trans. Ind. Electron. , 11 , 4841 - 4851
    79. 79)
      • G. Karimi-Moghaddam , R.D. Gould , S. Bhattacharya .
        79. Karimi-Moghaddam, G., Gould, R.D., Bhattacharya, S., et al: ‘Thermomagnetic liquid cooling: A novel electric machine thermal management solution’. IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014.
        . IEEE Energy Conversion Congress and Exposition (ECCE)
    80. 80)
      • P. Ponomarev , M. Polikarpova , J. Pyrhönen .
        80. Ponomarev, P., Polikarpova, M., Pyrhönen, J.: ‘Thermal modeling of directly-oil-cooled permanent magnet synchronous machine’. Int. Conf. on Electrical Machines (ICEM), Marseille, 2012.
        . Int. Conf. on Electrical Machines (ICEM)
    81. 81)
      • A. Nollau , D. Gerling .
        81. Nollau, A., Gerling, D.: ‘Novel cooling methods using flux-barriers’. Int. Conf. on Electrical Machines (ICEM), Berlin, 2014.
        . Int. Conf. on Electrical Machines (ICEM)
    82. 82)
      • D.J. Kim , J.W. Jung , S.O. Kwon .
        82. Kim, D.J., Jung, J.W., Kwon, S.O., et al: ‘Thermal Analysis using Equivalent Thermal Network in IPMSM’. 2008 Int. Conf. on Electric Machines and Systems, Wuhan, China, 2008.
        . 2008 Int. Conf. on Electric Machines and Systems
    83. 83)
      • J. Lindström . (1999)
        83. Lindström, J.: ‘Development of an experimental permanent-magnet motor drive’ (Department of Electric Power Engineering, Göteborg, 1999).
        .
    84. 84)
      • A.M.H.N.C.a.J.T.M. El-Refaie .
        84. El-Refaie, A.M.H.N.C.a.J.T.M.: ‘Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 303309.
        . IEEE Trans. Energy Convers. , 2 , 303 - 309
    85. 85)
      • P.H. Mellor , D. Roberts , D. Turner .
        85. Mellor, P.H., Roberts, D., Turner, D.: ‘Lumped parameter thermal model for electrical machines of TEFC design’. IEEE Proc. B-Electr. Power Appl., 1991, 138, (5), pp. 205218.
        . IEEE Proc. B-Electr. Power Appl. , 5 , 205 - 218
    86. 86)
      • S. Nategh , O. Wallmark , M. Leksell .
        86. Nategh, S., Wallmark, O., Leksell, M., et al: ‘Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 477488.
        . IEEE Trans. Energy Convers. , 2 , 477 - 488
    87. 87)
      • N.V.a.K.P. Sali .
        87. Sali, N.V.a.K.P.: ‘Lumped parameter analysis of SMPM synchronous electric motor used for hybrid electric vehicle traction drive’, IOSR J. Mechan. Civil Eng., 2014, 2014, pp. 4247.
        . IOSR J. Mechan. Civil Eng. , 42 - 47
    88. 88)
      • D. Staton , A. Boglietti , A. Cavagnino .
        88. Staton, D., Boglietti, A., Cavagnino, A.: ‘Solving the more difficult aspects of electric motor thermal analysis’. IEEE Int. Electric Machines and Drives Conf., 2003. IEMDC'03, Madison, 2003.
        . IEEE Int. Electric Machines and Drives Conf., 2003. IEMDC'03
    89. 89)
      • E. Illiano .
        89. Illiano, E.: ‘Design of a highly efficient brushless current excited synchronous motor for automotive purposes’. PhD thesis, ETH, Zurich, 2014.
        . PhD thesis
    90. 90)
      • C. Mejuto .
        90. Mejuto, C.: ‘Improved lumped parameter thermal modelling of synchronous generators’. PhD thesis, The University of Edinburgh, 2010.
        . PhD thesis, The University of Edinburgh
    91. 91)
      • S. Nategh .
        91. Nategh, S.: ‘Thermal analysis and management of high-performance electrical machines’. PhD thesis, KTH, 2013.
        . PhD thesis
    92. 92)
      • R. Shafaie , M. Kalantar , A. Gholami .
        92. Shafaie, R., Kalantar, M., Gholami, A.: ‘Thermal analysis of 10-MW-class wind turbine HTS synchronous generator’, IEEE Trans. Appl. Supercond., 2014, 24, (2), pp. 9098.
        . IEEE Trans. Appl. Supercond. , 2 , 90 - 98
    93. 93)
      • J. Junak , G. Ombach , D.A. Staton .
        93. Junak, J., Ombach, G., Staton, D.A.: ‘Permanent magnet DC motor brush transient thermal analysis’. 2008 Int. Conf. on Electrical Machines, Vilamoura, 2008.
        . 2008 Int. Conf. on Electrical Machines
    94. 94)
      • C. Cossar , M. McGilp , S. Omori .
        94. Cossar, C., McGilp, M., Omori, S., et al: ‘Analytical thermal models for small induction motors’. 18th Int. Conf. on Electrical Machines, Vilamoura, 2008.
        . 18th Int. Conf. on Electrical Machines
    95. 95)
      • Y. Tang .
        95. Tang, Y.: ‘Characterization, numerical analysis, and design of switched reluctance motors’, IEEE Trans. Ind. Appl., 1997, 33, (6), pp. 15441552.
        . IEEE Trans. Ind. Appl. , 6 , 1544 - 1552
    96. 96)
      • J. Faiz , B. Ganji , C.E. Carstensen .
        96. Faiz, J., Ganji, B., Carstensen, C.E., et al: ‘Temperature rise analysis of switched reluctance motors due to electromagnetic losses’, IEEE Trans. Magn., 2009, 45, (7), pp. 29272934.
        . IEEE Trans. Magn. , 7 , 2927 - 2934
    97. 97)
      • Y. Zhang , J. Ruan , T. Huang .
        97. Zhang, Y., Ruan, J., Huang, T., et al: ‘Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite-element analysis’, IEEE Trans. Magn., 2012, 48, (2), pp. 10471050.
        . IEEE Trans. Magn. , 2 , 1047 - 1050
    98. 98)
      • F. Marignetti , V.D. Colli , Y. Coia .
        98. Marignetti, F., Colli, V.D., Coia, Y.: ‘Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 35913601.
        . IEEE Trans. Ind. Electron. , 10 , 3591 - 3601
    99. 99)
      • W. Wu , J.B. Dunlop , S.J. Collocott .
        99. Wu, W., Dunlop, J.B., Collocott, S.J., et al: ‘Design optimization of switched reluctance motor by electromagnetic and thermal finite element analysis’. Digest of INTERMAG 2003. Int. Magnetics Conf., vol. 39, no. 5, 2003, pp. 33343336.
        . Digest of INTERMAG 2003. Int. Magnetics Conf. , 3334 - 3336
    100. 100)
      • K.N. Srinivas , R. Arumugam .
        100. Srinivas, K.N., Arumugam, R.: ‘Analysis and characterization of switched reluctance motors: part ii - flow, thermal and vibration analyses’, IEEE Trans. Magn., 2005, 41, (4), pp. 13211332.
        . IEEE Trans. Magn. , 4 , 1321 - 1332
    101. 101)
      • S.J. Pickering , D. Lampard , M. Shanel .
        101. Pickering, S.J., Lampard, D., Shanel, M.: ‘Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine’. Int. Conf. Power Electronics, Machines and Drives, June 2002.
        . Int. Conf. Power Electronics, Machines and Drives
    102. 102)
      • D.A. Howey , A.S. Holmes , K.R. Pullen .
        102. Howey, D.A., Holmes, A.S., Pullen, K.R.: ‘Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17161723.
        . IEEE Trans. Ind. Appl. , 4 , 1716 - 1723
    103. 103)
      • P.H. Connor , S.J. Pickering , C. Gerada .
        103. Connor, P.H., Pickering, S.J., Gerada, C., et al: ‘Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management’, IET Electr. Power Appl., 2013, 7, (3), pp. 231236.
        . IET Electr. Power Appl. , 3 , 231 - 236
    104. 104)
      • R. Wrobel , G. Vainel , C. Copeland .
        104. Wrobel, R., Vainel, G., Copeland, C., et al: ‘Investigation of mechanical loss components and heat transfer in an axial-flux pm machine’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30003011.
        . IEEE Trans. Ind. Appl. , 4 , 3000 - 3011
    105. 105)
      • M. Schrittwieser , A. Marn , E. Farnleitner .
        105. Schrittwieser, M., Marn, A., Farnleitner, E., et al: ‘Numerical analysis of heat transfer and flow of stator duct models’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 226233.
        . IEEE Trans. Ind. Appl. , 1 , 226 - 233
    106. 106)
      • Z. Huang , F. Marquez , M. Alakula .
        106. Huang, Z., Marquez, F., Alakula, M., et al: ‘Characterization and application of forced cooling channels for traction motors in HEVs’. 20th Int. Conf. on Electrical Machines (ICEM), 2012.
        . 20th Int. Conf. on Electrical Machines (ICEM)
    107. 107)
      • M. Shanel , S.J. Pickering , D. Lampard .
        107. Shanel, M., Pickering, S.J., Lampard, D.: ‘Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator’. IEEE Int. Conf. of Machines and Drives, 2003.
        . IEEE Int. Conf. of Machines and Drives
    108. 108)
      • B.D.J. Maynes , R.J. Kee , C.E. Tindall .
        108. Maynes, B.D.J., Kee, R.J., Tindall, C.E., et al: ‘Simulation of airflow and heat transfer in small alternators using CFD’. IEEE Proc. Electrical Power Applications, 2003.
        . IEEE Proc. Electrical Power Applications
    109. 109)
      • R. Ujiie , R. Arlitt , H. Etoh .
        109. Ujiie, R., Arlitt, R., Etoh, H.: ‘Application of computational fluid dynamics (CFD) on ventilation-cooling optimization of electrical machines’. Review Energy Technologies Generation, Transmission and Distribution of Electric and Thermal Energy, 2006.
        . Review Energy Technologies Generation, Transmission and Distribution of Electric and Thermal Energy
    110. 110)
      • A. Nollau , D. Gerling .
        110. Nollau, A., Gerling, D.: ‘A new cooling approach for traction motors in hybrid drives’. IEEE Int. Electric Machines and Drives Conf. (IEMDC), 2013.
        . IEEE Int. Electric Machines and Drives Conf. (IEMDC)
    111. 111)
      • M. Schrittwieser , O. Bíró , E. Farnleitner .
        111. Schrittwieser, M., Bíró, O., Farnleitner, E., et al: ‘Analysis of temperature distribution in the stator of large synchronous machines considering heat conduction and heat convection’, IEEE Trans. Magn., 2015, 51, (3), pp. 4953.
        . IEEE Trans. Magn. , 3 , 49 - 53
    112. 112)
      • C. Jungreuthmayer , T. Bäuml , O. Winter .
        112. Jungreuthmayer, C., Bäuml, T., Winter, O., et al: ‘A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 45684578.
        . IEEE Trans. Ind. Electron. , 12 , 4568 - 4578
    113. 113)
      • R. Pechanek , L. Bouzek .
        113. Pechanek, R., Bouzek, L.: ‘Analyzing of two types water cooling electric motors using computational fluid dynamics’. Int. Power Electronics and Motion Control Conf. (EPE/PEMC), 2012.
        . Int. Power Electronics and Motion Control Conf. (EPE/PEMC)
    114. 114)
      • M. Polikarpova , P. Ponomarev , P. Lindh .
        114. Polikarpova, M., Ponomarev, P., Lindh, P., et al: ‘Hybrid cooling method of axial-flux permanent-magnet machines for vehicle applications’, IEEE Trans. Ind. Electron, 2015, 62, (12), pp. 73827390.
        . IEEE Trans. Ind. Electron , 12 , 7382 - 7390
    115. 115)
      • A. Boglietti , A. Cavagnino , D.A. Staton .
        115. Boglietti, A., Cavagnino, A., Staton, D.A.: ‘Determination of critical parameters in electrical machine thermal models’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 11501159.
        . IEEE Trans. Ind. Appl. , 4 , 1150 - 1159
    116. 116)
      • B. Yoheswaran , K.R. Pullen .
        116. Yoheswaran, B., Pullen, K.R.: ‘Flow and convective heat transfer in disk-type electric machines with coolant flow’. Int. Conf. on Electrical Machines (ICEM), 2014.
        . Int. Conf. on Electrical Machines (ICEM)
    117. 117)
      • R. Wrobel , P.H. Mellor , D. Holliday .
        117. Wrobel, R., Mellor, P.H., Holliday, D.: ‘Thermal modeling of a segmented stator winding design’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 20232030.
        . IEEE Trans. Ind. Appl. , 5 , 2023 - 2030
    118. 118)
      • A. Boglietti , A. Cavagnino , D.A. Staton .
        118. Boglietti, A., Cavagnino, A., Staton, D.A., et al: ‘End space heat transfer coefficient determination for different induction motor enclosure types’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 929937.
        . IEEE Trans. Ind. Appl. , 3 , 929 - 937
    119. 119)
      • Y. Yang , N. Schofield , A. Emadi .
        119. Yang, Y., Schofield, N., Emadi, A.: ‘Double-rotor switched reluctance machine design, simulations, and validations’, IET Electr. Syst. Transp., 2016, 6, (2), pp. 171175.
        . IET Electr. Syst. Transp. , 2 , 171 - 175
    120. 120)
      • A. Cavagnino , A. Tenconi , S. Vaschetto .
        120. Cavagnino, A., Tenconi, A., Vaschetto, S.: ‘Experimental characterization of a belt-driven multiphase induction machine for 48-V automotive applications: losses and temperatures assessments’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 13211330.
        . IEEE Trans. Ind. Appl. , 2 , 1321 - 1330
    121. 121)
      • L. Michalski . (2001)
        121. Michalski, L.: ‘Temperature measurement’ (John Wiley & Sons, New York, 2001).
        .
    122. 122)
      • M. Ganchev , B. Kubicek , H. Kappeler .
        122. Ganchev, M., Kubicek, B., Kappeler, H.: ‘Rotor temperature monitoring system’. Int. Conf. on Electrical Machines (ICEM), 2010.
        . Int. Conf. on Electrical Machines (ICEM)
    123. 123)
      • C. Mejuto , M. Mueller , M. Shanel .
        123. Mejuto, C., Mueller, M., Shanel, M., et al: ‘Improved synchronous machine thermalmodelling’. Int. Conf. on Electrical Machines (ICEM), 2008.
        . Int. Conf. on Electrical Machines (ICEM)
    124. 124)
      • S. Stipetic , M. Kovacic , Z. Hanic .
        124. Stipetic, S., Kovacic, M., Hanic, Z., et al: ‘Measurement of excitation winding temperature on synchronous generator in rotation using infrared thermography’, IEEE Trans. Ind. Electron., 2012, 59, (5), pp. 22882298.
        . IEEE Trans. Ind. Electron. , 5 , 2288 - 2298
    125. 125)
      • A. Specht , O. Wallscheid , J. Böcker .
        125. Specht, A., Wallscheid, O., Böcker, J.: ‘Determination of rotor temperature for an interior permanent magnet synchronous machine using a precise flux observer’. Int. Power Electronics Conf. (ECCE-Asia), Hiroshima, Japan, 2014.
        . Int. Power Electronics Conf. (ECCE-Asia)
    126. 126)
      • D.D. Reigosa , F. Briz , P. Garcia .
        126. Reigosa, D.D., Briz, F., Garcia, P., et al: ‘Magnet temperature estimation in surface PM machines using high-frequency signal injection’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 14681475.
        . IEEE Trans. Ind. Appl. , 4 , 1468 - 1475
    127. 127)
      • O. Wallscheid , J. Böcker .
        127. Wallscheid, O., Böcker, J.: ‘Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors’, IEEE Trans. Energy Convers., 2016, 36, (1), pp. 354365.
        . IEEE Trans. Energy Convers. , 1 , 354 - 365
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0050
Loading

Related content

content/journals/10.1049/iet-est.2015.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address