access icon free Practical control schemes of a battery/supercapacitor system for electric vehicle

A hybrid energy storage system for electric vehicle using supercapacitors and a battery is studied. Using energetic macroscopic representation formalism, an inversion-based control (IBC) can be deduced. A comparison between IBC and two other control schemes is performed within a practical aspect. Simulation and experimental tests with a reduced-scale test bed are provided using a real driving cycle of an electric car. The results point out a more effective behaviour for the IBC than the other control schemes in terms of dynamical response.

Inspec keywords: hybrid electric vehicles; supercapacitors; energy storage

Other keywords: electric car; hybrid energy storage system; inversion based control; battery/supercapacitor system; IBC; practical control schemes; electric vehicle; energetic macroscopic representation formalism

Subjects: Control of electric power systems; Transportation; Other energy storage; Transportation system control

References

    1. 1)
      • 32. Letrouvé, T., Bouscayrol, A., Lhomme, W., et al: ‘Different models of a traction drive for an electric vehicle simulation’. 2010 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2010, pp. 16.
    2. 2)
    3. 3)
      • 4. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design’ (CRC Press, 2009, 2nd edn.).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 13. Bouscayrol, A., Hautier, J.-P., Lemaire-Semail, B.: ‘Graphic formalisms for the control of multi-physical energetic systems’, in Roboam, X. (Ed.): ‘Systemic design methodologies for electrical energy systems: analysis, synthesis and management’ (John Wiley & Sons, 2012).
    11. 11)
      • 33. Depature, C., Lhomme, W., Bouscayrol, A., et al: ‘Efficiency map of the traction system of an electric vehicle from an on-road test drive’. 2014 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2014, pp. 16.
    12. 12)
    13. 13)
      • 10. Vulturescu, B., Trigui, R., Lallemand, R., et al: ‘Implementation and test of a hybrid storage system on an electric urban bus’, Transp. Res., 2013, Part C, 30, pp. 5566.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 15. Castaings, A., Lhomme, W., Trigui, R., et al: ‘Different control schemes of a battery/supercapacitor system in electric vehicle’. 2014 IEEE Vehicle Power and Propulsion Conf. (VPPC), 2014, pp. 16.
    21. 21)
      • 1. European Bank for Reconstruction and Development and International Energy Agency (IEA): ‘A Tale of Renewed Cities’ (2013).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 25. Tutuianu, M., Marotta, A., Steven, H., et al: ‘Development of a World-wide Worldwide harmonized Light duty driving Test Cycle (WLTC)’ (UN/ECE/WP.29/GRPE/WLTP - IG, 2014).
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 23. Cheng, D.L., Wismer, M.G.: ‘Active control of power sharing in a battery/ultracapacitor hybrid source’. Second IEEE Conf. on Industrial Electronics and Applications, 2007. ICIEA 2007, 2007, pp. 29132918.
    33. 33)
    34. 34)
      • 2. International Energy Agency (IEA): ‘CO2 Emissions from Fuel Combustion, Highlights’ (2013).
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0011
Loading

Related content

content/journals/10.1049/iet-est.2015.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading