Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive closed-loop state control system for a three-level neutral-point-clamped Z-source inverter

Z-source inverter (ZSI) combines the electrical function of a DC/DC converter and a three-phase inverter. This study deals with a three-level neutral-point-clamped (NPC) ZSI which brings an additional electrical potential. The benefit is the lower output current ripple of each phase. Due to the non-linear behaviour of the Z-source control path, designing an accurate and especially a dynamic control can be challenging. This study presents a design of an adaptive control for a three-level NPC ZSI to fulfil the previously mentioned goals. The correct functionality of the control system is underlined with measurements at different operating points. A possible application field for three-level ZSIs are hybrid and electric vehicles.

References

    1. 1)
    2. 2)
    3. 3)
      • 11. Tenner, S., Hofmann, W.: ‘A comparison of Z-Source three-level NPC inverter versus Z-Source two-level inverter’. Emobility – Electrical Power Train, Leipzig, 2010, pp. 17.
    4. 4)
      • 20. Lei, Q., Yang, S., Peng, F.Z., et al: ‘Application of current-fed quasi-Z-source inverter for traction drive of hybrid electric vehicles’. IEEE Vehicle Power and Propulsion Conf. (VPPC), Dearborn, MI, 2009, pp. 754760.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 29. Muniz, J.H.G., da Silva, E.R.C., dos Santos, E.C.: ‘A hybrid PWM strategy for Z-source neutral-point-clamped inverter’. 26th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Fort Worth, TX, 2011, pp. 450456.
    12. 12)
    13. 13)
      • 32. Sack, L., Piepenbreier, B., von Zimmermann, M.: ‘Z-source inverter for general purpose drives in motoring and regenerating operation’. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Ischia, 2008, pp. 766771.
    14. 14)
      • 9. Peng, F.Z.: ‘Z-source inverter’. 37th IAS Annual Meeting Industry Applications Conf., Pittsburgh, PA, 2002, vol. 2, pp. 775781.
    15. 15)
      • 17. Lei, Q., Cao, D., Peng, F.Z.: ‘Novel loss and harmonic minimized vector modulation for a current-fed quasi-Z-source inverter in HEV motor drive application’, IEEE Trans. Power Electron., 2013, 29, (3), pp. 13441357.
    16. 16)
      • 5. Schweizer, M., Kolar, J.W.: ‘High efficiency drive system with 3-level T-type inverter’. 14th European Conf. on Power Electronics and Applications (EPE), Birmingham, 2011, pp. 110.
    17. 17)
      • 28. Effah, F.B., Watson, A.J., Wheeler, P.W., et al: ‘Optimal switching pattern for space vector modulated Z-source NPC inverter’. Sixth IET Int. Conf. on Power Electronics, Machines and Drives (PEMD), Bristol, 2012, pp. 16.
    18. 18)
      • 19. Beer, K., Piepenbreier, B.: ‘Properties and advantages of the quasi-Z-source inverter for DC-AC conversion for electric vehicle applications’. IEEE Emobility, Leipzig, 2010, pp. 16.
    19. 19)
      • 8. Tenner, S., Gunther, S., Hofmann, W.: ‘Loss minimization of electric drive systems using a Z-source inverter in automotive applications’. 15th European Conf. on Power Electronics and Applications (EPE), Lille, 2013, pp. 18.
    20. 20)
    21. 21)
      • 10. Strzelecki, R.: ‘Three-level Z-source neutral-point-clamped inverter’. Eighth Int. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, 2006, pp. 172179.
    22. 22)
    23. 23)
      • 13. Yu, K., Luo, F.L., Zhu, M.: ‘Space vector pulse-width modulation based maximum boost control of Z-source inverters’. IEEE Int. Symp. on Industrial Electronics (ISIE), Hangzhou, 2012, pp. 512526.
    24. 24)
      • 7. Kamiya, M.: ‘Development of traction drive motors for the Toyota hybrid system’. Int. Power Electronics Conf., 2005.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 1. van Hoek, H., Boesing, M., van Treek, D., et al: ‘Power electronic architectures for electric vehicles’. IEEE Emobility – Electrical Power Train, Leipzig, 2010, pp. 16.
    29. 29)
    30. 30)
    31. 31)
      • 4. Schweizer, M., Lizama, I., Friedli, T., et al: ‘Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies’. 36th Annual Conf. on IEEE Industrial Electronics Society (IECON), Glendale, AZ, 2010, pp. 391396.
    32. 32)
      • 6. Tenner, S., Gunther, S., Hofmann, W.: ‘Loss minimization of electric drive systems using a DC/DC converter and an optimized battery voltage in automotive applications’. IEEE Vehicle Power and Propulsion Conf. (VPPC), Chicago, IL, 2011, pp. 17.
    33. 33)
      • 31. Rabkowski, J.: ‘The bidirectional Z-source inverter as an energy storage/grid interface’. Int. Conf. on Computer as a Tool (EUROCON), Warsaw, 2007, pp. 16291635.
    34. 34)
      • 22. Bakhovtsev, I.A., Panfilov, D.V.: ‘Comparison of three-phase three-level Z-source inverter and quasi-Z-source inverter characteristic’. Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Novosibirsk, 2014, pp. 365369.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2015.0010
Loading

Related content

content/journals/10.1049/iet-est.2015.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address