access icon free Onboard DC grid employing smart grid technology: challenges, state of the art and future prospects

Research in All Electric Ship (AES) and onboard DC grids has already been initiated and it is going to be intensified because of its promising perspectives. This study aims to present in a coherent and methodical way why onboard DC distribution systems, smart grids and AES concept can greatly improve ship efficiency. Emerging technical challenges and future prospects are presented; state of the art is summarised while directions for a complete research roadmap are proposed.

Inspec keywords: ships; power distribution; marine power systems; reviews; smart power grids

Other keywords: ship efficiency improvement; all electric ship; onboard DC grids; onboard DC distribution systems; smart grid technology; AES concept

Subjects: Transportation; Marine transportation (energy utilisation); Distribution networks

References

    1. 1)
    2. 2)
      • 45. Hanyu, L., Longhua, M.: ‘Construction of integrated smart power system for future ship’. Int. Conf. on Power System Technology, 2010, p. 6.
    3. 3)
      • 31. Zhu, L., Liu, J., Cupelli, M., Monti, A.: ‘Decentralized linear quadratic Gaussian control of multi-generator MVDC shipboard power system with constant power loads’. IEEE Electric Ship Technologies Symp., ESTS 2013, 2013, pp. 308313.
    4. 4)
    5. 5)
      • 35. MEPC.1-Circ.681–2: ‘Interim guidelines on the method of calculation of the energy efficiency design index for new ships’, August 2009.
    6. 6)
      • 34. Tsekouras, G.J., Kanellos, F.D., Prousalidis, J.M., Hatzilaou, I.K.: ‘Implementation limitations of STANAG 1008 design constraints for pulsed loads’, J. Naval Sci. Technol., 2012, 4, pp. 110135.
    7. 7)
      • 17. Chen, S., Daozhuo, J., Wentao, L., Yufen, W.: ‘An overview of the application of DC zonal distribution system in shipboard integrated power system’. Third Digital Manufacturing and Automation Conf., 31 July 2012–2 August 2012, pp. 206209.
    8. 8)
      • 1. Sudhoff, S.D.: ‘Currents of change’. IEEE Power & Energy Magazine, July–August 2011, pp. 3037.
    9. 9)
      • 58. Cairoli, P., Dougal, R.A., Lentijo, K.: ‘Coordination between supply power converters and contactors for fault protection in multi-terminal MVDC distribution systems’. IEEE Electric Ship Technologies Symp., ESTS, 2013, pp. 493499.
    10. 10)
    11. 11)
      • 6. Hansen, J.F., Lindtjorn, J.O., Myklebust, T.A., Vanska, K.: ‘Trends in technology-onboard DC gridin ABB review 2/12, pp. 2933, Available on: http://www.abb.com/abbreview.
    12. 12)
    13. 13)
    14. 14)
      • 68. Luo, Y., Srivastava, S., Andrus, M., Cartes, D.: ‘Application of disturbance metrics for reducing impacts of energy storage charging in an MVDC based IPS’. IEEE Electric Ship Technologies Symp., ESTS, 2013, pp. 287291.
    15. 15)
      • 36. MEPC.1-Circ.684: ‘Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI)’, August 2009.
    16. 16)
      • 21. ABB: ‘ABB solves 100-year-old electrical puzzle -new technology to enable future DC grid’, November 2012. Available on: http://www.abb.com/cawp/seitp202/65df338284e41b3dc1257aae0045b7de.aspx.
    17. 17)
      • 25. Yan, C., Venayagamoorthy, G.K., Corzine, K.A.: ‘Optimal location and sizing of energy storage modules for a smart electric ship power system’. Symp. Series on Computational Intelligence – Symp. on Computational Intelligence Applications in Smart Grid SSCI-CIASG 2011, 2011, pp. 45804587.
    18. 18)
      • 54. Li, W., Luo, M., Monti, A., Ponci, F.: ‘Wavelet based method for fault detection in medium voltage DC shipboard power systems’. IEEE I2MTC – Int. Instrumentation and Measurement Technology Conf., 2012, p. 6.
    19. 19)
      • 44. Bose, S., Natarajan, B., Scoglio, C., Schulz, N.N.: ‘Distributed optimization for shipboard smart grid’. Conf. Proc. IEEE Latin-America Conf. on Communications, LATINCOM 2012, 2012, p. 6.
    20. 20)
    21. 21)
    22. 22)
      • 19. Certuche-Alzate, J.P., Velez-Reyes, M.: ‘A reconfiguration algorithm for a DC zonal electric distribution system based on graph theory methods’. IEEE ESTS 2009, 20–22 April 2009, pp. 235241.
    23. 23)
      • 39. Saghaleini, M., Mazloomzadeh, A.: ‘Agent based control scheme for a smart powers system including renewable energy sources’. Conf. Proc. 10th Int. Conf. on Environment and Electrical Engineering, EEEIC.EU 2011, 2011, p. 6.
    24. 24)
      • 20. Hansen, J.F.: ‘Modeling and Control of Marine Power Systems’, Ph.D. thesis, NTNU, 2000.
    25. 25)
    26. 26)
    27. 27)
      • 22. Magnusson, J., Bissal, A., Engdahl, G., Saers, R., Zhang, Z., Liljestrand, L.: ‘On the use of metal oxide varistors as a snubber circuit in solid-state breakers’. Fourth IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), 6–9 October 2013, p. 4.
    28. 28)
    29. 29)
      • 63. Kwasinski, A.: ‘Advanced power electronics enabled distribution architectures: design, operation, and control’. Proc. Eighth Int. Conf. on Power Electronics - ECCE Asia, 2011, pp. 14841491.
    30. 30)
    31. 31)
      • 38. Qunying, S., Ramachandran, B., Srivastava, S.K., Andrus, M., Cartes, D.A.: ‘Power and energy management in integrated power system’. IEEE ESTS 2011, Alexandria, VA, 10–13 April 2011, pp. 414419.
    32. 32)
    33. 33)
      • 3. Thongam, J.S., Tarbouchi, M., Okou, A.F., Bouchard, D., Beguenane, R.: ‘All-electric ships – a review of the present state of the art’. Eighth Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013, p. 8.
    34. 34)
    35. 35)
      • 61. e-harboursproject. Available online: http://eharbours.eu/.
    36. 36)
      • 18. Momoh, J.A., Kaddah, S.S., Salawu, W.: ‘Security assessment of DC zonal naval-ship power system’. LESCOPE'01 no., 2001, pp. 206212.
    37. 37)
    38. 38)
      • 14. Seenumani, G.: ‘Real-time Power Management of Hybrid Power Systems in All Electric Ship Applications’. Ph.D., Mechanical Engineering, University of Michigan, 2010, p. 134.
    39. 39)
      • 30. Zhang, X.N., Vilathgamuwa, D.M., Foo, G., et al: ‘Cascaded sliding mode control for global stability of three phase AC/DC PWM rectifier with rapidly varying power electronic loads’. IECON Proc. (Industrial Electronics Conf.), 2013, pp. 45804587.
    40. 40)
    41. 41)
      • 2. Prousalidis, J.M., Tsekouras, G.J., Kanellos, F.D.: ‘New challenges emerged from the development of more efficient electric energy generation units’. IEEE ESTS, Alexandria-Virginia, USA, April 2011.
    42. 42)
    43. 43)
      • 37. Kanellos, F.D., Tsekouras, J., Prousalidis, J.: ‘Control system for fuel consumption minimization – gas emission limitation of full electric propulsion ship power systems’. Proc. Inst. Mech. M, J. Eng. Maritime Environ., 2012, 228, (1), pp. 1728.
    44. 44)
    45. 45)
    46. 46)
      • 10. Chalfant, J., Langland, B., Abdelwahed, S., et al: ‘A Collaborative Early-Stage Ship Design Environment’ (ESRDC library, 2012). Available on: http://www.esrdc.mit.edu/library/ESRDC_library/Chalfant_1205_1.pdf.
    47. 47)
    48. 48)
    49. 49)
      • 52. Gao, H., Pang, Q., Yanqiu, A., et al: ‘New type of protection and control method for smart distribution grid’. DPSP'12 Conf., 23–26 April 2012, pp. 15.
    50. 50)
      • 4. Butcher, M.S., Mattick, D., Cheong, W.J.: ‘Informing the AC versus DC debate – the electric ship technology demonstrator’. All Electric Ship, Versailles, France, 2005.
    51. 51)
    52. 52)
      • 57. Feliachi, A., Belkacemi, R.: ‘Intelligent multi-agent system for smart grid power management’, in Keyhani, A., Marwali, M. (Ed.): ‘Smart power grids’ (Springer-Verlag, Berlin Heidelberg, 2011), pp. 515542.
    53. 53)
    54. 54)
      • 29. Zadeh, M.K., Zahedi, B., Molinas, M., Norum, L.E.: ‘Centralized stabilizer for marine DC microgrid’. IECON Proc. (Industrial Electronics Conf.), 2013, pp. 33593363.
    55. 55)
      • 15. MS Viking Legend, e-ms news 090813. Available on: http://www.schiffstechnik-buchloh.de/en/downloads/mv-viking-legend.pdf.
    56. 56)
      • 16. ‘DC-SHIP’ project. Available on: http://www.dc-ship.org.
    57. 57)
      • 42. Feng, X., Butler-Purry, K.L., Zourntos, T., Chou, H.M.: ‘Multi-agent system-based real-time load management for NG IPS ships in high/medium voltage level’. IEEE Power System Conf. and Exposition 2011, Phoenix, AZ, March 2011, pp. 18.
    58. 58)
    59. 59)
    60. 60)
    61. 61)
      • 51. One engine. Three powerful results. Available on: http://www.ge-energy.com/content/multimedia/_files/downloads/AS_E_trigen_July08_screen.pdf (GE Energy website).
    62. 62)
      • 13. Srivastava, A.K., Bastos, J.L., Schulz, N.N., Ginn, H.L.III: ‘AC/DC power system modeling and analysis for shipboard applications’. IEEE Power Engineering Society General Meeting, PES, 2007, p. 5.
    63. 63)
    64. 64)
      • 66. Shenai, K., Shah, K.: ‘Smart DC micro-grid for efficient utilization of distributed renewable energy’. Energytech 2011 IEEE, 25–26 May 2011, pp. 16.
    65. 65)
      • 26. Sudhoff, S.D., Crider, J.M.: ‘Advancements in generalized immittance based stability analysis of DC power electronics based distribution systems’. IEEE ESTS 2011, 10–13 April 2011, pp. 207212.
    66. 66)
      • 27. Bartelt, R., Oettmeier, M., Heising, C., Staudt, V., Steimel, A.: ‘Scenario-based stability-assessment of converter-fed DC-ship grids loaded with pulsed power’. Electric Ship Technologies Symp. IEEE ESTS 2011, 2011, p. 4.
    67. 67)
      • 32. Chen, D., Xu, L., Ya, L.: ‘DC network stability and dynamic analysis using virtual impedance method’. Proc. (Industrial Electronics Conf.) IECON, 2012, pp. 56255630.
    68. 68)
      • 24. Tsekouras, G.J., Kanellos, F.D.: ‘Optimal operation of ship electrical power system with energy storage system and photovoltaics: analysis and application’, WSEAS Trans. Power Syst., 2013, 8, (4), pp. 145155.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2013.0056
Loading

Related content

content/journals/10.1049/iet-est.2013.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading