access icon free Design of a controller for rail eddy current brake system

A rail eddy current brake (ECB) controller is proposed to produce the optimum braking and attractive forces using the variation of the reference current according to the speed. To improve the operation of the ECB, an optimal design of the controller is carried out by means of finite element method. Kriging method is utilised to reduce the computational costs. Additionally, the genetic algorithm is used as a multiobjective optimisation method to find the optimum current references in different speeds.

Inspec keywords: finite element analysis; railways; eddy current braking; optimal control; control system synthesis; genetic algorithms

Other keywords: optimal design; reference current variation; finite element method; Kriging method; attractive forces; rail eddy current brake system; genetic algorithm; multiobjective optimisation method; optimum braking; FEM; ECB controller; controller design; optimum current references

Subjects: Finite element analysis; Optimisation techniques; Transportation; Finite element analysis; Control system analysis and synthesis methods; Rail-traffic system control; Control of electric power systems; Optimal control; Optimisation techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 23. Wu, S., Wang, Y., Cheng, S.: ‘Optimal reset control design for current control and uncertainties estimation in permanent magnet synchronous’, IET Electr. Power Appl., 2012, 6, (2), pp. 122132 (doi: 10.1049/iet-epa.2011.0210).
    16. 16)
      • 17. Rocca, P., Oliveri, G., Massa, A.: ‘Differential evolution as applied to electromagnetics’, IEEE Antennas Propag. Mag., 2011, 53, (1), pp. 3849 (doi: 10.1109/MAP.2011.5773566).
    17. 17)
      • 11. Koziel, S., Ogurtsov, S., Couckuyt, I., Dhaene, T.: ‘Cost-efficient electromagnetic-simulation-driven antenna design using co-Kriging’, IET Microw. Antennas Propag., 2012, 6, (14), pp. 15211528 (doi: 10.1049/iet-map.2012.0490).
    18. 18)
      • 8. Schöpf, M.Knorr-Bremse: ‘Eddy current brake – an innovative wear-free braking system independent from wheel-rail adhesion’. Sixth World Congress on High Speed Rail, Amsterdam, 2008.
    19. 19)
      • 10. Hawe, G., Sykulski, J.: ‘Considerations of accuracy and uncertainty with Kriging surrogate models in single-objective electromagnetic design optimisation’, IET Sci. Meas. Technol., 2007, 1, (1), pp. 3747 (doi: 10.1049/iet-smt:20060035).
    20. 20)
      • 19. Fodorean, D., Idoumghar, L., N'diaye, A., Bouquain, D., Miraoui, A.: ‘Simulated annealing algorithm for the optimisation of an electrical machine’, IET Electr. Power Appl., 2012, 6, (9), pp. 735742 (doi: 10.1049/iet-epa.2011.0029).
    21. 21)
      • 13. Kleijnen, J.: ‘Design and analysis of computational experiments: overview’, in: Bartz-Beielstein, T. (ed.): ‘Experimental methods for the analysis of optimisation algorithms’, (Springer, 2010), pp. 5172.
    22. 22)
      • 1. Sharif, S., Faiz, J., Sharif, K.: ‘Performance analysis of a cylindrical eddy current brake’, IET Electr. Power Appl., 2012, 6, (9), pp. 661668 (doi: 10.1049/iet-epa.2012.0006).
    23. 23)
      • 16. Fonseca, C.M., Fleming, P.J.: ‘Multiobjective genetic algorithms’, in: Zalzala, A.M.S., Fleming, P. (eds.): ‘Genetic algorithms in engineering systems’, (IET, 1997), pp. 6378.
    24. 24)
      • 6. Wang, P.J., Chiueh, S.J.: ‘Analysis of eddy-current brakes for high speed railway’, IEEE Trans. Magn., 1998, 34, (4), pp. 12371239 (doi: 10.1109/20.706507).
    25. 25)
      • 4. Ryoo, H.J., Kim, J.S., Kang, D.H., Rim, G.H., Kim, Y.J., Won, C.Y.: ‘Design and analysis of an eddy current brake for a high-speed railway train with constant torque control’. IEEE Industry Applications Conference, Rome, Italy, October 2000, pp. 277281.
    26. 26)
      • 20. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: ‘A fast and Elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, pp. 182197 (doi: 10.1109/4235.996017).
    27. 27)
      • 7. Jiles, D.C., Atherton, D.L.: ‘Ferromagnetic hysteresis’, IEEE Trans. Magn., 1983, 19, (5), pp. 21832185 (doi: 10.1109/TMAG.1983.1062594).
    28. 28)
      • 22. Ebrahim, A., Murphy, G.: ‘Adaptive backstepping control of an induction motor under time-varying load torque and rotor resistance uncertainty’. Proc. System Theory, Cookeville, TN, United States, March 2006, pp. 512518.
    29. 29)
      • 9. Zamani, A., Mirabadi, A.: ‘Railway wheel detector in the presence of eddy current brakes’, ACES J., 2013, 28, (1), pp. 7784.
    30. 30)
      • 14. Lei, G., Shao, K.R., Guo, Y., Zhu, J., Lavers, J.D.: ‘Sequential optimisation method for the design of electromagnetic device’, IEEE Trans. Magn., 2008, 44, pp. 32173220 (doi: 10.1109/TMAG.2008.2002779).
    31. 31)
      • 18. Baumgartner, U., Magele, C., Preis, K., Renhart, W.: ‘Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design’, IEE Proc. Sci. Meas. Technol., 2004, 151, (6), pp. 499502 (doi: 10.1049/ip-smt:20040631).
    32. 32)
      • 3. Rodger, D., Lai, H.C., Vong, P.K.: ‘Finite element models of eddy current brakes’. Fourth Proc. Int. Conf. on CEM, Bournemouth, UK, April 2002, p. 53.
    33. 33)
      • 5. Srivastava, R.K., Kumar, S.: ‘An alternative approach for calculation of braking force of an eddy-current brake’, IEEE Trans. Magn., 2009, 45, (1), pp. 150154 (doi: 10.1109/TMAG.2008.2006993).
    34. 34)
      • 2. Whalley, R.H., Fiet, C.E.: ‘Railway braking and related control systems’. IET Professional Development Course on Electric Traction Systems, Manchester, UK, November 2010, pp. 135166.
    35. 35)
      • 15. Deb, K.: ‘Multiobjective optimisation using evolutionary algorithms’ (Wiley, 2001).
    36. 36)
      • 21. Zhihuan, L., Yinhong, L., Xianzhong, D.: ‘Non-dominated sorting genetic algorithm-II for robust multiobjective optimal reactive power dispatch’, IET Gener. Transm. Distrib., 2010, 4, (9), pp. 10001008 (doi: 10.1049/iet-gtd.2010.0105).
    37. 37)
      • 12. Xu, B., Sun, F., Liu, H., Ren, J.: ‘Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping’, IET Control Theory Appl., 2012, 6, (4), pp. 487497 (doi: 10.1049/iet-cta.2011.0026).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2013.0008
Loading

Related content

content/journals/10.1049/iet-est.2013.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading