access icon free Power conversion for a novel AC/DC aircraft electrical distribution system

This study proposes a novel and compact AC/DC electrical distribution system for new generation aircraft. In these new aircraft power systems, all loads are fed by two DC bus systems: at 28 V and at ±270 V. The electrical distribution system, whose design and implementation are described in this study, has only one primary AC source (360–900 Hz at 230 V) with all the required DC voltage levels being derived from this source. This solution enables elimination of the complex mechanical coupling apparatus currently used, for fixed frequency AC systems, to maintain the generator speed at constant level while the engines operate at variable speed. Under the proposed solution, all the conversion stages needed to generate various output voltage levels are implemented by using power converters assembled in one unit. Each converter has a current control loop in order to regulate the output current even during output line short circuits and also to limit the inrush current to the circuit at turn-on. To prove the concept, a 5 kW prototype was designed and tested, and demonstrated to meet all the specifications within the relevant standards regarding input and output power quality.

Inspec keywords: power distribution control; aerospace engines; electric current control; AC-DC power convertors; short-circuit currents; power supply quality; aircraft power systems

Other keywords: current regulation; power converter; DC bus system; line short circuit; fixed frequency AC system; current control loop; power conversion; power 5 kW; DC voltage level; power quality; inrush current limit; generator speed maintenance; AC-DC aircraft electrical distribution system; new generation aircraft power system; aircraft engine; voltage 28 V

Subjects: Power supply quality and harmonics; Current control; Control of electric power systems; Aerospace power systems; Distribution networks; Aerospace propulsion; Power convertors and power supplies to apparatus; Power system control

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 8. Barruel, F., Retiere, N., Schanen, J.L., Caisley, A.: ‘Stability approach for vehicles DC power network: application to aircraft on-board system’. IEEE 36th Power Electronics Specialists Conf., 2005 (PESC '05), 2005, pp. 11631169.
    17. 17)
      • 2. Trentin, A., Zanchetta, P., Wheeler, P., Clare, J.: ‘Power flow analysis in electro-mechanical actuators for civil aircraft’, IET Electr. Power Appl., 2011, 5, (1), pp. 4858 (doi: 10.1049/iet-epa.2009.0270).
    18. 18)
      • 13. Heldwein, M.L., Nussbaumer, T., Kolar, J.W.: ‘Common mode modelling and filter design for a three-phase buck-type pulse width modulated rectifier system’, IET Power Electron., 2010, 3, (2), pp. 209218 (doi: 10.1049/iet-pel.2008.0342).
    19. 19)
      • 17. Baumann, M., Kolar, J.W.: ‘A novel control concept for reliable operation of a three-phase three-switch buck-type unity-power-factor rectifier with integrated boost output stage under heavily unbalanced mains condition’, IEEE Trans. Ind. Electron., 2005, 52, (2), pp. 399409 (doi: 10.1109/TIE.2005.843916).
    20. 20)
      • 7. Matsumoto, A., Fukui, A., Takeda, T., Hirose, K., Yamasaki, M.: ‘Development of 400 Vdc power distribution system and 400 Vdc output rectifier’. Proc. 31st Int. Telecommun. Energy Conf., Incheon, Korea, October 2009, pp. 15.
    21. 21)
      • 10. Malesani, L., Tenti, P.: ‘Three-phase AC/DC PWM converter with sinusoidal AC currents and minimum filter requirements’, IEEE Trans. Ind. Appl., 1987, IA-23, (1), pp. 7177 (doi: 10.1109/TIA.1987.4504868).
    22. 22)
      • 16. Nussbaumer, T., Baumann, M., Kolar, J.W.: ‘Comparative evaluation of modulation methods of a three-phase buck + boost PWM rectifier. Part II: experimental verification’, IET Power Electron., 2008, 1, (2), pp. 268274 (doi: 10.1049/iet-pel:20070124).
    23. 23)
      • 15. Baumann, M., Nussbaumer, T., Kolar, J.W.: ‘Comparative evaluation of modulation methods of a three-phase buck + boost PWM rectifier. Part I: theoretical analysis’, IET Power Electron., 2008, 1, (2), pp. 255267 (doi: 10.1049/iet-pel:20070123).
    24. 24)
      • 12. Nussbaumer, T., Heldwein, M.L., Gong, G., Round, S.D., Kolar, J.W.: ‘Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM Rectifier system’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 791799 (doi: 10.1109/TIE.2007.909061).
    25. 25)
      • 1. Mecrow, B., Cullen, J., Mellor, P.: ‘Editorial –electrical machines and drives for the more electric aircraft’, IET Electr. Power Appl., 2011, 5, (1), pp. 12 (doi: 10.1049/iet-epa.2011.9010).
    26. 26)
      • 14. Nussbaumer, T., Heldwein, M.L., Kolar, J.W.: ‘Differential mode input filter design for a three-phase buck-type PWM rectifier based on modeling of the EMC test receiver’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 16491661 (doi: 10.1109/TIE.2006.881988).
    27. 27)
      • 4. Jomier, T.: ‘Final-public MOET technical report’, December 2009, website: www.eurtd.com/moet.
    28. 28)
      • 3. Cross, A., Baghramian, A., Forsyth, A.: ‘Approximate, average, dynamic models of uncontrolled rectifiers for aircraft applications’, IET Power Electron., 2009, 2, (4), pp. 398409 (doi: 10.1049/iet-pel.2007.0021).
    29. 29)
      • 11. Nussbaumer, T., Baumann, M., Kolar, J.W.: ‘Comprehensive design of a three-phase three-switch buck-type PWM rectifier’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 551562 (doi: 10.1109/TPEL.2006.889987).
    30. 30)
      • 9. Gong, G., Heldwein, M.L., Drofenik, U., Minibock, J., Mino, K., Kolar, J.W.: ‘Comparative evaluation of three-phase high-power-factor AC-DC converter concepts for application in future more electric aircraft’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 727737 (doi: 10.1109/TIE.2005.843957).
    31. 31)
      • 5. Stupar, A., Friedli, T., Minibock, J., Kolar, J.W.: ‘Towards a 99% efficient three-phase buck-type PFC rectifier for 400-V DC distribution systems’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17321744 (doi: 10.1109/TPEL.2011.2166406).
    32. 32)
      • 6. Pratt, A., Kumar, P., Aldridge, T.V.: ‘Evaluation of 400 V DC distribution in Telco and data centers to improve energy efficiency’. Proc. 29th Int. Telecommun. Energy Conf., Rome, Italy, October 2007, pp. 3239.
    33. 33)
      • 19. Trentin, A., Zanchetta, P., Wheeler, P., Clare, J.: ‘Performance evaluation of high-voltage 1.2 kV silicon carbide metal oxide semi-conductor field effect transistors for three-phase buck-type PWM rectifiers in aircraft applications’, IET Power Electron., 2012, 5, (9), pp. 18731881 (doi: 10.1049/iet-pel.2011.0466).
    34. 34)
      • 20. Moham, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics’, Media Enhanced Third Edition, John Wiley and Sons, Inc..
    35. 35)
      • 18. Nussbaumer, T., Kolar, J.W.: ‘Improving mains current quality for three-phase three-switch buck-type PWM rectifiers’, IEEE Trans. Power Electron., 2006, 21, (4), pp. 967973 (doi: 10.1109/TPEL.2006.876856).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2013.0005
Loading

Related content

content/journals/10.1049/iet-est.2013.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading