access icon free Analysis of stator current of induction motor used in transport system at single phasing by measuring phase angle, symmetrical components, Skewness, Kurtosis and harmonic distortion in Park plane

Stator current of induction motor is analysed at single phasing by measuring phase angle, symmetrical components, Skewness, Kurtosis and harmonic distortion in Park plane. Diagnosis of single phasing of induction motor has been achieved by sequence components and stator current based pattern assessment. Distinct phase shift from 120° to 180° is observed between healthy phases. Patterns are formed using line currents and single phasing is assessed by using rule sets developed from features extracted from those patterns. Experimental result agrees with rule set and result obtained by assessment using sequence components. Then assessment is done by analysing wavelet decomposition based Skewness and Kurtosis of stator current in Park plane. At last, area based approach is used for assessment of single phasing and different distortion factors because of harmonics in Park plane are assessed. Accuracy increases with the increase of sampling rate of data acquisition system and use of Park plane has reduced computation effort by two-thirds. Thus single phasing is detected by sequence components supported by pattern formation and feature extraction and then harmonics during single phasing are assessed by wavelet decomposition and area-based approach in Park plane.

Inspec keywords: induction motors; angular measurement; stators; wavelet transforms

Other keywords: feature extraction; kurtosis measurement; pattern formation; transport system; skewness measurement; symmetrical components; phase angle measurement; data acquisition system; induction motor stator current analysis; Park plane; single phasing; harmonic distortion measurement; wavelet decomposition; rule sets

Subjects: Integral transforms; Spatial variables measurement; Asynchronous machines

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 8. Mohammed, O.A., Abed, N.Y., Ganu, S.: ‘Modeling and characterization of induction motor internal faults using finite element and discrete wavelet transform’, IEEE Trans. Magn., 2006, 42, (10), pp. 34343436 (doi: 10.1109/TMAG.2006.879091).
    25. 25)
      • 18. Mehla, N., Dahiya, R.: ‘An approach of condition monitoring of induction motor using MCSA’, Int. J. Syst. Appl. Eng. Dev., 2007, 1, (1), pp. 1317.
    26. 26)
      • 31. Tavakoli Bina, M., Kashefi, A.: ‘Three-phase unbalance of distribution systems: complementary analysis and experimental case study’, Int. J. Electr. Power Energy Syst., 2011, 33, (4), pp. 817826 (doi: 10.1016/j.ijepes.2010.12.003).
    27. 27)
      • 32. Wang, C., Jia, Q.-Q., Li, X.-B., Dou, C.-X.: ‘Fault location using synchronized sequence measurements’, Int. J. Electr. Power Energy Syst., 2008, 30, (2), pp. 134139 (doi: 10.1016/j.ijepes.2007.06.027).
    28. 28)
      • 9. Cusido, J., Jornet, A., Romeral, L., Ortega, J.A., Garcia, A.: ‘Wavelet and PSD as a fault detection technique, ITMC 2006-instrumentation and measurement technology conference’. Proc. IEEE, Sorrento, Italy, 24–27 April 2006, pp. 13971400.
    29. 29)
      • 12. Su, H., Chong, T.: ‘Induction machine condition monitoring using neural network modeling’, IEEE Trans. Ind. Electr., 2007, 54, (1), pp. 241249 (doi: 10.1109/TIE.2006.888786).
    30. 30)
      • 33. Islam, S.M., Mostafa, M.G.: ‘Novel microprocessor based negative phase sequence relay and meter’, Int. J. Electr. Power Energy Syst., 1996, 18, (8), pp. 547552 (doi: 10.1016/0142-0615(96)00018-X).
    31. 31)
      • 4. Kumar, P., Jamil, M., Thomas, M.S., Moinuddin, A.: ‘Sensitivity analysis of fault quantities’, Int. J. Electr. Power Energy Syst., 2000, 22, (2), pp. 147153 (doi: 10.1016/S0142-0615(98)00053-2).
    32. 32)
      • 28. Diallo, D., Hachemi Benbouzid, M.E., Hamad, D., Pierre, X.: ‘Fault detection and diagnosis in an induction machine drive: a pattern recognition approach based on Concordia stator mean current vector’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 512519 (doi: 10.1109/TEC.2005.847961).
    33. 33)
      • 6. Bedekar, P.P., Bhide, S.R., Kale, V.S.: ‘Fault section estimation in power system using Hebb's rule and continuous genetic algorithm’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 457465 (doi: 10.1016/j.ijepes.2010.10.008).
    34. 34)
      • 13. Caldara, S., Nuccio, S., Galluzzo, G.R., Trapanese, M.: ‘A fuzzy diagnostic system: application to linear induction motor drives’. Proc. IEEE Instrumentation Measurement Technology Conf., Ottawa, ON, Canada, 1997, vol. 1, pp. 257262.
    35. 35)
      • 26. Nejjari, H., Benbouzid, M.E.H.: ‘Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 730735 (doi: 10.1109/28.845047).
    36. 36)
      • 35. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Harmonic power in Clarke plane’, J. Electr. Eng., 2010, 91, pp. 2328.
    37. 37)
      • 10. Rodriguez-Donate, C., Romero-Troncoso, R.J., Garcia-Perez, A., Razo-Montes, D.A.: ‘FPGA based embedded system for induction motor failure monitoring at the start-up transient vibrations with wavelets’. IEEE Int. Symp. on Industrial Embedded Systems, SIES 2008, Le Grande Motte, France, 11–13 June 2008, pp. 208214.
    38. 38)
      • 20. Jung, J.-H., Lee, J.-J., Kwon, B.-H.: ‘Online diagnosis of induction motors using MCSA’, IEEE Trans. Ind. Electron., 2006, 53, (6), pp. 18421852 (doi: 10.1109/TIE.2006.885131).
    39. 39)
      • 2. Dorrel, D.G., Thomson, W.T., Roach, S.: ‘Analysis of airgap flux, current and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors’, IEEE Trans. Ind. Appl., 1997, 33, pp. 2434 (doi: 10.1109/28.567073).
    40. 40)
      • 36. Chattopadhyay, S, Karmakar, S, Mitra, M., Sengupta, S.: ‘Assessment of crawling of an induction motor by stator current Concordia analysis’, IET Electron. Lett., 2012, 48, (14), pp. 841842 (doi: 10.1049/el.2011.4008).
    41. 41)
      • 37. Chattopadhyay, S., Karmakar, S., Mitra, M., Sengupta, S.: ‘Symmetrical components and current Concordia based assessment of single phasing of an induction motor by feature pattern extraction method and radar analysis’, Int. J. Electr. Power Energy Syst., 2012, 37, (1), pp. 4349 (doi: 10.1016/j.ijepes.2011.12.002).
    42. 42)
      • 34. Gaouda, A.M., Salma, M.M.A., Sultan, M.R., Chikhani, A.Y.: ‘Power quality detection and classification using wavelet-multi-resolution signal decomposition’, IEEE Trans. Power Deliv., 1999, 14, (4), pp. 14691476 (doi: 10.1109/61.796242).
    43. 43)
      • 21. Douglas, H., Pillay, P.: ‘The impact of wavelet selection on transient motor current signature analysis’. IEEE Int. Conf. on Electric Machines and Drives, San Antonio, TX, 15–15 May 2005, pp. 8085.
    44. 44)
      • 19. Supangat, R., Ertugrul, N., Soong, W.L., Gray, D.A., Hansen, C., Griegar, J.: ‘Detection of broken rotor bars in induction motor using starting current analysis and effects of loading’, IEE Proc. Electr. Power Appl., 2006, 153, (6), pp. 848855 (doi: 10.1049/ip-epa:20060060).
    45. 45)
      • 11. Filippetti, F., Franceschini, G., Tassoni, C., Vas, P.: ‘AI techniques in induction machines diagnosis including the speed ripple effect’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 98108 (doi: 10.1109/28.658729).
    46. 46)
      • 27. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Harmonic analysis in a three-phase system using Park transformation technique’, Model. Meas. Control A, 2007, 80, (3), pp. 4257.
    47. 47)
      • 30. Zhang, Y.-G., Wang, Z.-P., Zhang, J.-F., Ma, J.: ‘Fault localization in electrical power systems: a pattern recognition approach’, Int. J. Electr. Power Energy Syst., 2011, 33, (3), pp. 791798 (doi: 10.1016/j.ijepes.2011.01.018).
    48. 48)
      • 25. Benbouzid, M.E.H., Nejjari, H.: ‘Monitoring and diagnosis of induction motor electrical faults using a current Park's vector pattern approach’. Proc. 1999 IEEE Int. Conf. on Electrical Machines and Drives, Seattle, WA, pp. 275277.
    49. 49)
      • 15. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘Intelligent power quality monitoring in an electric power system’, Lectures Model. Simul., 2004, 5, (2), pp. 146156.
    50. 50)
      • 7. Cusido, J., Romeral, L., Ortego, J.A., Rosero, J.A., Espinosa, A.G.: ‘Fault detection in induction machines using power spectral density in wavelet decomposition’, IEEE Trans. Ind. Electr., 2008, 55, (2), pp. 633643 (doi: 10.1109/TIE.2007.911960).
    51. 51)
      • 29. Suja, S., Jerome, J.: ‘Pattern recognition of power signal disturbances using S Transform and TT Transform’, Int. J. Electr. Power Energy Syst., 2010, 32, (1), pp. 3753 (doi: 10.1016/j.ijepes.2009.06.012).
    52. 52)
      • 17. Benbouzid, M.E.H.: ‘A review of induction motor signature analysis as a medium for fault detection’, IEEE Trans. Ind. Electron., 2000, 47, (5), pp. 984993 (doi: 10.1109/41.873206).
    53. 53)
      • 14. Zidani, F., Hachemi Benbouzid, M.E., Diallo, D., NAÏT-SAÏD, M.S.: ‘Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system’, IEEE Trans. Energy Convers., 2003, 18, (4), pp. 469475 (doi: 10.1109/TEC.2003.815832).
    54. 54)
      • 3. Lu, B., PAGHDA, M.: ‘Induction motor rotor fault diagnosis using wavelet analysis of one-cycle average power’. 23rd Annual IEEE Applied Power Electronics Conf. and Exposition, APEC 2008, Austin, TX, 24–28 February 2008, pp. 11131118.
    55. 55)
      • 5. Lin, X., Weng, H., Wang, B.: ‘A generalized method to improve the location accuracy of the single-ended sampled data and lumped parameter model based fault locators’, Int. J. Electr. Power Energy Syst., 2009, 31, (5), pp. 201205 (doi: 10.1016/j.ijepes.2009.01.003).
    56. 56)
      • 23. Cardoso, A.J.M., Mendes, A.M.S., Cruz, S.M.A.: ‘The Park's vector approach: new developments in on-line fault diagnosis of electrical machines, power electronics and adjustable speed drives’. Proc. IEEE Int. Symp. Diagnostics for Electrical Machines, Power Electronics and Drives, Gijon, Spain, 1–3September 1999, pp. 8997.
    57. 57)
      • 22. Fenger, M., Lloyd, B.A., Thomson, W.T.: ‘Development of a tool to detect faults in induction motors via current signature analysis’. Cement Industry Technical Conf., Conf. Record, IEEE-IAS/PCA 2003, Dallas, TX, USA, 4–9 May 2003, pp. 3746.
    58. 58)
      • 16. Chattopadhyay, S., Mitra, M., Sengupta, S.: ‘A novel approach for diagnosis of current unbalance at the terminals of a three-phase induction motor’. Proc. MS2004-Int. Conf. on Modeling and Simulation by AMSE (France), Lyon France, July 2004, pp. 3.223.25.
    59. 59)
      • 1. Watson, J.F., Paterson, N.C.: ‘Improved techniques for rotor fault detection in three phase induction motors’. IEEE Industry Applications Conf., Thirty-Third IAS Annual Meeting, St. Louis, MO, 12–15 October 1998, vol. 1, pp. 271277.
    60. 60)
      • 24. Cruz, S.M.A., Cardoso, A.J.M.: ‘Stator winding fault diagnosis in three phase synchronous and asynchronous motors by extended Park's vector approach’, IEEE Trans. Ind. Appl., 2001, 27, (5), pp. 12271233 (doi: 10.1109/28.952496).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2012.0048
Loading

Related content

content/journals/10.1049/iet-est.2012.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading