access icon free Optimal placement of rectifier substations on DC traction systems

Rectifier substation placement on DC traction systems has been the purpose of several works which have tried to establish mathematical models to optimise that placement. Those mathematical models were always performed to optimise one variable like distance between substations, consumed energy or peak demand. This study presents the rectifier substation placement through optimisation techniques, specifically genetic algorithm. This proposed technique differs from the early presented ones because the genetic algorithm is applied on substation placement for DC traction systems, considering the variations of train position and train power consumption during their operations, in order to keep all traction substations evenly loaded. In this study, the chosen parameters for optimal rectifier placement are peak demand and consumed energy, which is illustrated with the application of the proposed method.

Inspec keywords: traction; genetic algorithms; rectifier substations

Other keywords: traction substations; optimal rectifier placement; rectifier substation placement; train position; genetic algorithm; mathematical model; peak demand; optimisation technique; consumed energy; train power consumption; optimal placement; DC traction systems

Subjects: Transportation; Optimisation techniques; Substations; Power convertors and power supplies to apparatus

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 22. Silva, J.A.P., Cardoso, J.R., Rossi, L.N.: ‘A fourth differential-integral formulation applied to the simulation of subway grounding systems’. Electric Power Components and Systems, April 2002, pp. 331343.
    9. 9)
      • 17. Goldberg, D.E.: ‘Genetic algorithms in search, optimization and machine learning’ (Addison-Wesley Longman Publishing Co., 1989).
    10. 10)
      • 13. Glover, F., Laguna, M.: ‘Tabu search’ (Kluwer, 1997).
    11. 11)
      • 11. Marler, R.T., Arora, J.S.: ‘Survey of multi-objective optimization methods for engineering’, Struct. Multidiscip. Optim., 2004, 26, pp. 369395 (doi: 10.1007/s00158-003-0368-6).
    12. 12)
      • 9. Griffiths, M., Sanders, M.: ‘Energy management of traction power substations on the Dallas area rapid transit system’. Proc. ASME/IEEE Joint Railroad Conference, 1999, pp. 627.
    13. 13)
      • 14. Kohonen, J.: ‘A brief comparison of simulated annealing and genetic algorithms(http://www.cs.helsinki.fi/u/kohonen/other.html).
    14. 14)
      • 24. Pires, C.L., Nabeta, S.I., Cardoso, J.R.: ‘ICCG method applied to solve DC traction load flow including earthing models’, IET Proc. Electr. Power Appl., 2007, 1, (2), pp. 193198 (doi: 10.1049/iet-epa:20060174).
    15. 15)
      • 20. Goodman, C.J., Mellitt, B., Rambukwella, N.B.: ‘CAE for the electrical design of urban rail transit systems’. Proc. Int. Conf. Computer Aided Design, Manufacture and Operation in the Railway and Other Mass Transit Systems, 1987, pp. 173193.
    16. 16)
      • 27. Sean, L.: ‘Essentials of metaheuristics(http://cs.gmu.edu/∼sean/book/metaheuristics/).
    17. 17)
      • 25. Pires, C.L., Nabeta, S.I., Cardoso, J.R.: ‘DC traction load flow including AC distribution network’, IET Proc. Electr. Power Appl., 2009, 1, (2), pp. 193198 (doi: 10.1049/iet-epa:20060174).
    18. 18)
      • 4. Brenna, M., Foiadelli, F., Zaninelli, D., Burchi, G.: ‘New simulation algorithm for electric transportation supply system sizing’. Proc. 43rd Universities Power Engineering Conf., 2008, pp. 15.
    19. 19)
      • 19. Davis, L.: ‘Handbook of genetic algorithms’ (VanNostrand Reinhold, 1991).
    20. 20)
      • 16. Mann, J.W., Smith, G.D.: ‘A comparison of heuristics for telecommunications traffic routing’. In Modern Heuristic Search Methods (Wiley, 1996).
    21. 21)
      • 10. Sbalzarini, I.F., Müller, S., Koumoutsakos, P.: ‘Multiobjective optimization using evolutionary algorithms’. Proc. Summer Program Center for Turbulance Research, 2000.
    22. 22)
      • 15. Manikas, T.W., Cain, J.T.: ‘Genetic algorithms vs. simulated annealing: a comparison of approaches for solving the circuit partitioning problem(http://www.pitt.edu/~twmst5/tr-96-101.html).
    23. 23)
      • 1. Kneschke, T.A.: ‘Simple method for determination of substation spacing for AC and DC electrification systems’, IEEE Trans. Ind. Appl., 1986, IA-22, (4), pp. 763780 (doi: 10.1109/TIA.1986.4504789).
    24. 24)
      • 3. De Koranyi, L.: ‘Design of DC power supply for rapid transit systems’, IEEE Trans. Ind. Gen. Appl., 1965, Vol IGA-1, (2), pp. 123130.
    25. 25)
      • 8. Viet, N.X.H., Song, H.-S., Nam, K.: ‘Locating power supplies on a personal rapid transit system to minimize system losses’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 16711677 (doi: 10.1109/TIA.2004.836310).
    26. 26)
      • 2. White, R.D.: ‘Lecture on AC and DC railway electrification and protection’, in IEE (ed.): ‘The IET professional development course on electric traction systems’ (IET Press, 2008), pp. 258305.
    27. 27)
      • 12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: ‘Optimization by simulated annealing’, Science, 1983, 220, pp. 671680 (doi: 10.1126/science.220.4598.671).
    28. 28)
      • 18. Grayaa, K., Aguili, T., Bouallegue, A.: ‘Integrating genetic algorithm with MoM analysis for planar microstrip structures’, J. Microw. Optoelectron. Electromagn. Appl., 2006, 5, (2), pp. 101110.
    29. 29)
      • 26. Wall, M.: ‘GAlib: a C++ library of genetic algorithm components’. Mechanical Engineering Department, Massachusetts Institute of Technology, 1996.
    30. 30)
      • 7. Chuang, H.J.: ‘Optimisation of inverter placement for mass rapid transit systems by immune algorithm’, IEE Proc. Electr. Power Appl., 2005, 152, (1), pp. 6171 (doi: 10.1049/ip-epa:20041143).
    31. 31)
      • 21. Yu, J.G., Goodman, C.J.: ‘Modelling of rail potential rise and leakage current in DC rail transit systems’. IEE Colloquium on Stray Current Effects of DC Railway and Tramway, 1990, pp. 2/2/12/2/6.
    32. 32)
      • 5. Von Lingen, J., Schmidt, P.: ‘Bahnelektroenergieversorgung und Eisenbahnbetrieb’, Elektrische Bahnen, 1998, 96, (1/2), pp. 1523.
    33. 33)
      • 23. Pires, C.L.: ‘Electrical railway and metro engineering – from trolleybus to high-speed rail(in Portuguese) (LTC Editora, 2013).
    34. 34)
      • 6. Chang, C.S., Low, J.S., Srinivasan, D.: ‘Application of tabu search in optimal system design and operation’, IEE Proc. Electr. Power Appl., 1999, 146, (1), pp. 7588 (doi: 10.1049/ip-epa:19990214).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-est.2010.0063
Loading

Related content

content/journals/10.1049/iet-est.2010.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading