http://iet.metastore.ingenta.com
1887

Fuel cell power conditioning for electric power applications: a summary

Fuel cell power conditioning for electric power applications: a summary

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Fuel cells are considered to be one of the most promising sources of distributed energy because of their high efficiency, low environmental impact and scalability. Unfortunately, multiple complications exist in fuel cell operation. Fuel cells cannot accept current in the reverse direction, do not perform well with ripple current, have a low output voltage that varies with age and current, respond sluggishly to step changes in load and are limited in overload capabilities. For these reasons, power converters are often necessary to boost and regulate the voltage as a means to provide a stiff applicable DC power source. Furthermore, the addition of an inverter allows for the conversion of DC power to AC for an utility interface or for the application of an AC motor. To help motivate the use of power conditioning for the fuel cell, a brief introduction of the different types, applications and typical electrical characteristics of fuel cells is presented. This is followed by an examination of the various topologies of DC–DC boost converters and inverters used for power conditioning of fuel cells. Several architectures to aggregate multiple fuel cells for high-voltage/high-power applications are also reviewed.

References

    1. 1)
      • (2002) DOE fuel cell handbook.
    2. 2)
      • J. Larminie , A. Dicks . (2003) Fuel cell systems explained.
    3. 3)
      • G. Hoogers . (2003) Fuel cell technology handbook.
    4. 4)
      • M.C. Williams , J.P. Strakey , S.C. Singhal . US distributed generation fuel cell program. J. Power Sources , 79 - 85
    5. 5)
      • N. Sammes , R. Bove , K. Stahl . Phosphoric acid fuel cells: fundamentals and applications. J. Shanghai Univ. Elec. Power , 75 - 78
    6. 6)
    7. 7)
      • Andersen, G.K., Klumpner, C., Kjaer, S.B., Blaabjerg, F.: `A new green power inverter for fuel cells', IEEE Power Electronics Specialists Conf., 2002, p. 727–733.
    8. 8)
      • R. Gemmen . (2002) Analysis for the effect of inverter ripple current on fuel cell operating condition.
    9. 9)
      • Michon, M., Duarte, J.L., Hendrix, M., Simoes, M.G.: `A three-port bi-directional converter for hybrid fuel cell systems', IEEE Power Electronics Specialists Conf., June 2004, 6, p. 4736–4742.
    10. 10)
      • Jang, S.-J., Lee, T.-W., Lee, W.-C., Won, C.-Y.: `Bi-directional DC–DC converter for fuel cell generation system', IEEE Power Electronics Specialists Conf., June 2004, 6, p. 4722–4728.
    11. 11)
      • Su, G.-J., Peng, F.Z.: `A low cost, triple-voltage bus DC–DC converter for automotive applications', IEEE Applied Power Electronics Conf. and Exposition, March 2005, 2, p. 1015–1021.
    12. 12)
      • Cacciato, M., Caricchi, F., Giuhlii, F., Santini, E.: `A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications', IEEE Industry Applications Society Annual Meeting, October 2004, 2, p. 1127–1133.
    13. 13)
      • Cha, H.J., Enjeti, P.N.: `A new soft switching direct converter for residential fuel cell power system', IEEE Industry Applications Society Annual Meeting, October 2004, 2, p. 1172–1177.
    14. 14)
      • Zubieta, L., Panza, G.: `Wide input voltage and high efficiency DC–DC converter for fuel cell applications', IEEE Applied PowerElectronics Conf. and Exposition, March 2005, 1, p. 85–89.
    15. 15)
      • J. Wang , F.Z. Peng , J. Anderson , A. Joseph , R. Buffenbarger . Low cost fuel cell converter system for residential power generation. IEEE Trans. Power Electron. , 5 , 1315 - 1322
    16. 16)
      • S. Meo , A. Perfetto , L. Piegari , F. Esposito . A ZVS current fed DC/DC converter oriented for applications fuel-cell-based. IEEE Ind. Electron. Soc. Annu. Conf. , 932 - 937
    17. 17)
      • Xu, H.P., Wen, X.H., Kong, L.: `High power DC–DC converter and fuel cell distributed generation system', IEEE Industry Applications Society Annual Meeting, October 2004, 2, p. 1134–1139.
    18. 18)
      • B. Ozpineci , L.M. Tolbert , D.J. Adams . Trade study on aggregation of multiple 10-kW solid oxide fuel cell power modules.
    19. 19)
      • R.-J. Wai , R.-Y. Duan . High step-up converter with coupled-inductor. IEE Proc., Electric Power Appl. , 1025 - 1035
    20. 20)
      • Todorovic, M.H., Palma, L., Enjeti, P.: `Design of a wide input range DC–DC converter with a robust power control scheme suitable for fuel cell power conversion', IEEE Industry Applications Society Annual Meeting, 2004, 1, p. 374–379.
    21. 21)
      • Zhang, M.T., Jiang, Y., Lee, F.C., Jovanovic, M.M.: `Single-phase three level boost power factor correction converter', IEEE Applied Power Electronics Conf., March 1995, 1, p. 434–439.
    22. 22)
      • C.R. Liu , A. Johnson , J.-S. Lai . A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications. IEEE Trans. Ind. Appl. , 6 , 1691 - 1697
    23. 23)
      • X. Kong , L.T. Choi , A.M. Khambadkone . Analysis and control of isolated current-fed full bridge converter in fuel cell system. IEEE Ind. Electron. Soc. Annu. Conf. , 2825 - 2830
    24. 24)
      • Zhu, X.C., Xu, D.H., Shen, G.Q., Xi, D.J., Mino, K., Umida, H.: `Current-fed DC/DC converter with reverse block IGBT for fuel cell distributing power system', IEEE Industry Applications Society Annual Meeting, October 2005, 3, p. 2043–2048.
    25. 25)
      • Song, Y.J., Chung, S.-K., Enjeti, P.N.: `A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems', IEEE Industry Applications Society Annual Meeting, October 2004, 1, p. 123–128.
    26. 26)
      • Kim, J.-T., Lee, B.-K., Lee, T.-W., Jang, S.-J., Kim, S.-S., Won, C.-Y.: `An active clamping current-fed half-bridge converter for fuel-cell generation systems', IEEE Power Electronics Specialists Conf., June 2004, 6, p. 4709–4714.
    27. 27)
      • Attanasio, R., Cacciato, M., Gennaro, F., Consoli, A.: `An innovative boost converter for fuel cells stationary generation systems', IEEE Industrial Electronics Society Annual Conf., November 2004, 3, p. 2831–2836.
    28. 28)
      • Krein, P.T., Balog, R.: `Low cost inverter suitable for medium-power fuel cell sources', IEEE Power Electronics Specialists Conf., June 2002, 1, p. 321–326.
    29. 29)
      • Nergaard, T.A., Ferrell, J.F., Leslie, L.G., Lai, J.-S.: `Design considerations for a 48 V fuel cell to split single phase inverter system with ultracapacitor energy storage', IEEE Power Electronics Specialists Conf., June 2002, 4, p. 2007–2012.
    30. 30)
      • Tuckey, A.M., Krase, J.N.: `A low-cost inverter for domestic fuel cell applications', 33rdAnnual IEEE Power Electronics Specialists Conf., 2002, 1, p. 339–346.
    31. 31)
      • P.T. Krein , R.S. Balog , X. Geng . High-frequency link inverter for fuel cells based on multiple-carrier PWM. IEEE Trans. Power Electron. , 5 , 1279 - 1288
    32. 32)
      • R.-J. Wai , R.-Y. Duan , J.-D. Lee , L.-W. Liu . High-efficiency fuel-cell power inverter with soft-switching resonant technique. IEEE Trans. Energy Conversion , 2 , 485 - 492
    33. 33)
      • Song, Y.J., Enjeti, P.N.: `A high frequency link direct DC–AC converter for residential fuel cell power systems', IEEE Power Electronics Specialists Conf., June 2004, 6, p. 4755–4761.
    34. 34)
      • F.Z. Peng . Z-source inverter. IEEE Trans. Ind. Appl. , 2 , 504 - 510
    35. 35)
      • Kim, Y.-H., Moon, H.-W., Kim, S.-H., Cheong, E.-J., Won, C.-Y.: `A fuel cell system with Z-source inverters and ultracapacitors', Int. Power Electronics and Motion Control Conf., 2004, 3, p. 1587–1591.
    36. 36)
      • Xu, L., Liu, J.: `Comparison study of DC–DC–AC combined converters for integrated starter generator applications', Int. Power Electronics and Motion Control Conf., August 2004, 3, p. 1130–1135.
    37. 37)
      • Ozpineci, B., Du, Z., Tolbert, L.M., Su, G.-J.: `Optimum fuel cell utilization with multilevel DC–DC converters', IEEE Applied Power Electronics Conf., February 2004, Anaheim, California, p. 1572–1576.
    38. 38)
      • Ozpineci, B., Tolbert, L.M., Du, Z.: `Multiple input converters for fuel cells', IEEE Industry Applications Society Annual Meeting, October 2004, Seattle, Washington, p. 791–797.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa_20060386
Loading

Related content

content/journals/10.1049/iet-epa_20060386
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address