Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free New sensorless commutation method for BLDC motors based on the line-to-line flux linkage theory

Sensorless brushless DC (BLDC) motor control is one of today's industry's requirements. The quality of this control is strongly dependent on the exact identification of the rotor angle for switching. In this study, a new sensorless BLDC motor control is introduced that could determine the exact time of the commutation. This method is based on the line-to-line flux linkage. The unscented Kalman filter method is used to identify the parameters in the proposed method. In comparison with back electromotive force based methods, this approach has advantages such as reduction of torque ripple due to commutation operations and resistance to motor parameters’ changes. The correctness of the method and the performed comparison is proved by the computer simulation and practical results.

References

    1. 1)
      • 16. Jahns, T.M., Becerra, R.C., Ehsani, M.: ‘Integrated current regulation for a brushless ECM drive’, IEEE Trans. Power Electron., 1991, 6, (1), pp. 118126.
    2. 2)
      • 10. Tong, C., Wang, M., Zhao, B., et al: ‘A novel sensorless control strategy for brushless direct current motor based on the estimation of line back electro-motive force’, Energies, 2017, 10, (9), pp. 120.
    3. 3)
      • 17. Ogasawara, S., Akagi, H.: ‘An approach to position sensorless drive for brushless DC motors’, IEEE Trans. Ind. Appl., 1991, 27, (5), pp. 928933.
    4. 4)
      • 31. Vaiyapuri, V., Seenithangom, J.: ‘Hybrid converter topology for reducing torque ripple of BLDC motor’, IET Power Electron., 2017, 10, (12), pp. 15721587.
    5. 5)
      • 19. Iepure, L.I., Boldea, I., Andreescu, G.D., et al: ‘Improved state observers for sensorless single phase BLDC-PM motor drives’. 36th Annual Conf. IEEE Industrial Electronics Society, Glendale, AZ, USA, December 2010, pp. 870875.
    6. 6)
      • 20. Dixon, J., Rodriguez, M., Huerta, R.: ‘Simplified sensorless control for BLDC motor, using DSP technology’. 28th Annual Conf. of the IEEE Industrial Electronics Society, Sevilla, Spain, November 2002, pp. 14311442.
    7. 7)
      • 3. Lee, H.J., Chung, S.U., Hwang, S.M.: ‘Noise source identification of a BLDC motor’, J. Mech. Sci. Technol., 2008, 22, pp. 708713.
    8. 8)
      • 13. Amuel, W., An-Chen, L.: ‘A 12-step sensorless drive for brushless DC motors based on back-EMF differences’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 646654.
    9. 9)
      • 1. Iang, W., Huang, H., Wang, J., et al: ‘Commutation analysis of brushless DC motor and reducing commutation torque ripple in the two-phase stationary frame’, IEEE Trans. Power Electron, 2017, 32, (6), pp. 46754682.
    10. 10)
      • 11. Zhou, Y., Mi, Y., Chen, L., et al: ‘Research on the precise control for sensorless brushless Dc motor’. Chinese Control and Decision Conf., Chongqing, China, July 2017, pp. 388391.
    11. 11)
      • 27. Prabu, J.M., Poongodi, P., Premkumar, K.: ‘Fuzzy supervised online coactive neuro-fuzzy inference system-based rotor position control of brushless DC motor’, IET Power Electron., 2016, 9, (11), pp. 22292239.
    12. 12)
      • 9. Markos, T., Wadros, J.R., Mahmood, N.: ‘Estimation of commutation instances using back EMF mapping for sensorless control of brushless permanent magnet motors’, IET Electr. Power Appl., 2013, 7, (4), pp. 270277.
    13. 13)
      • 15. Xinda, S., Bangcheng, H., Shiqiang, Z., et al: ‘High-precision sensorless drive for high-speed BLDC motors based on the virtual 3rd harmonic back-EMF’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 15281540.
    14. 14)
      • 12. Gang, L., Chenjun, C., Kun, W., et al: ‘Sensorless control for high-speed brushless DC motor based on the line-to-line back-EMF’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 46694683.
    15. 15)
      • 26. Hamida, M.A., Leon, J.D., Glumineau, A., et al: ‘An adaptive interconnected observer for sensorless control of PM synchronous motor with online parameter identification’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 739748.
    16. 16)
      • 33. Stumberger, B., Stumberger, G., et al: ‘High-performance permanent magnet brushless motors with balanced concentrated windings and similar slot and pole numbers’, J. Magn. Magn. Mater., 2006, 304, (2), pp. 829831.
    17. 17)
      • 5. Choi, J.S., Izui, K., Nishiwaki, S., et al: ‘Topology optimization of the stator for minimizing cogging torque of IPM motors’, IEEE Trans. Magn., 2011, 47, (10), pp. 30243027.
    18. 18)
      • 7. Damodharan, P., Krishna, V.: ‘Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 661668.
    19. 19)
      • 28. Lv, H., Wei, G., Ding, Z., et al: ‘Sensorless control for the brushless DC motor: an unscented Kalman filter algorithm’, Syst. Sci. Control Eng., 2015, 3, pp. 813.
    20. 20)
      • 21. Kim, T., Ehsani, M.: ‘Sensorless control of the BLDC motors from near-zero to high speeds’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 16351645.
    21. 21)
      • 30. Carlson, R., Mazenc, M.L., Dos, J.C., et al: ‘Analysis of torque ripple due to phase commutation in brushless DC machines’, IEEE Trans. Ind. Appl., 1992, 28, (3), pp. 632638.
    22. 22)
      • 2. Chen, W., Liu, Y., Li, X., et al: ‘A novel method of reducing commutation torque ripple for brushless DC motor based on Cuk converter’, IEEE Trans. Power Electron, 2017, 32, (7), pp. 54975508.
    23. 23)
      • 22. Kim, T., Ehsani, M.: ‘An error analysis of the sensorless position estimation for BLDC motors’. 38th IAS Annual Industry Applications Conf., Salt Lake City, UT, USA, October 2003, pp. 611617.
    24. 24)
      • 14. Liu, J.M., Zhu, Z.Q.: ‘Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 18611870.
    25. 25)
      • 18. Ertugrul, N., Acarnley, P.: ‘A new algorithm for sensorless operation of permanent magnet motors’, IEEE Trans. Ind. Appl., 1994, 30, (1), pp. 126133.
    26. 26)
      • 24. Zheng, C., Li, Y.: ‘Sensorless speed control for brushless DC motors system using sliding-mode controller and observers’. Conf. Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, August 2016, pp. 20162020.
    27. 27)
      • 32. Lee, W.J., Sul, S.K.: ‘A New starting method of BLDC motors without position sensor’, IEEE Trans. Ind. Appl., 2006, 42, (6), pp. 15321538.
    28. 28)
      • 6. Acarnley, P.P., Watson, J.F.: ‘Review of position-sensorless operation of brushless permanent-magnet machines’, IEEE Trans. Ind. Electron., 2006, 53, (2), pp. 352362.
    29. 29)
      • 23. Yilmaz, M., Tuncay, R.N., Ustun, O., et al: ‘Sensorless control of brushless DC motor based on wavelet theory’, Electr. Power Compon. Syst., 2009, 37, (10), pp. 10631080.
    30. 30)
      • 8. Kim, J., Kim, S., Lim, J.: ‘Commutation point estimation for sensorless brushless DC motor using back electromagnetic force change rate by least square method’, Electron. Letters, 2015, 51, (1), pp. 3133.
    31. 31)
      • 4. Xia, K., Li, Z., Lu, J., et al: ‘Acoustic noise of brushless DC motors induced by electromagnetic torque ripple’, Journal of Power Electronics, 2017, 17, (4), pp. 963971.
    32. 32)
      • 29. Lalami, A., Wamkeue, R., Kamwa, L., et al: ‘Unscented Kalman filter for non-linear estimation of induction machine parameters’, IET Electr. Power Appl., 2012, 6, (9), pp. 611620.
    33. 33)
      • 25. Fakham, H., Djemai, M., Busawon, K.: ‘Design and practical implementation of a back-emf sliding-mode observer for a brushless dc motor’, IET Electr. Power Appl., 2008, 2, (6), pp. 353361.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5356
Loading

Related content

content/journals/10.1049/iet-epa.2018.5356
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address