Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Thermal analysis of fault-tolerant electrical machines for aerospace actuators

For safety-critical applications, electrical machines need to satisfy several constraints, in order to be considered fault tolerant. In fact, if specific design choices and appropriate control strategies are embraced, fault-tolerant machines can operate safely even in faulty conditions. However, particular care should be taken for avoiding uncontrolled thermal overload, which can either cause severe failures or simply shorten the machine lifetime. This study describes the thermal modelling of two permanent magnet synchronous machines for aerospace applications. In terms of the winding's layout, both machines employ concentrated windings at alternated teeth, with the purpose of accomplishing fault-tolerance features. The first machine (i.e. Machine A) adopts a three-phase winding configuration, while a double three-phase configuration is used by the second one (i.e. Machine B). For both machines, the winding temperatures are evaluated via simplified thermal models, which were experimentally validated. Copper and iron losses, necessary for the thermal simulations, are calculated analytically and through electromagnetic finite-element analysis, respectively. Finally, two aerospace study cases are presented, and the machines’ thermal behaviour is analysed during both healthy and faulty conditions. Single-phase open-circuit and three-phase short-circuit are accounted for Machines A and B, respectively.

References

    1. 1)
      • 1. Hill, C.I., Bozhko, S., Tao, Y., et al: ‘More electric aircraft electro-mechanical actuator regenerated power management’. 2015 IEEE 24th Int. Symp. Industrial Electronics (ISIE), 2015, pp. 337342.
    2. 2)
      • 8. Gerada, C., Galea, M., Kladas, A.: ‘Electrical machines for aerospace applications’. 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 2015, pp. 7984.
    3. 3)
      • 12. Giangrande, P., Hill, C.I., Bozhko, S.V., et al: ‘A novel multi-level electro-mechanical actuator virtual testing and analysis tool’. Seventh IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2014), 2014, pp. 16.
    4. 4)
      • 28. Boglietti, A., Cavagnino, A., Staton, D.: ‘Determination of critical parameters in electrical machine thermal models’, IEEE Trans. Ind. Appl., 2008, 44, pp. 11501159.
    5. 5)
      • 13. Ishak, D., Zhu, Z.Q., Howe, D.: ‘Comparison of PM brushless motors, having either all teeth or alternate teeth wound’, IEEE Trans. Energy Convers., 2006, 21, pp. 95103.
    6. 6)
      • 6. Al-Timimy, A., Degano, M., Giangrande, P., et al: ‘Design and optimization of a high power density machine for flooded industrial pump’. 2016 XXII Int. Conf. Electrical Machines (ICEM), 2016, pp. 14801486.
    7. 7)
      • 29. Tong, W.: ‘Mechanical design of electric motors’ (Taylor & Francis, Boca Raton, FL, 2014).
    8. 8)
      • 30. Pyrhonen, J., Jokinen, T., Hrabovcova, V.: ‘Design of rotating electrical machines’ (John Wiley & Sons, West Sussex, UK, 2009).
    9. 9)
      • 22. Boglietti, A., Cavagnino, A., Staton, D., et al: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, pp. 871882.
    10. 10)
      • 5. Glassock, R., Galea, M., Williams, W., et al: ‘Novel hybrid electric aircraft propulsion case studies’, MDPI J. Aeronaut. Astronaut., 2017, 4, (3), article 45, pp. 122.
    11. 11)
      • 7. Sciascera, C., Giangrande, P., Brunson, C., et al: ‘Optimal design of an electro-mechanical actuator for aerospace application’. IECON 2015 – 41st Annual Conf. IEEE Industrial Electronics Society, 2015, pp. 001903001908.
    12. 12)
      • 19. Xu, Z., Al-Timimy, A., Degano, M., et al: ‘Thermal management of a permanent magnet motor for an directly coupled pump’. 2016 XXII Int. Conf. Electrical Machines (ICEM), 2016, pp. 27382744.
    13. 13)
      • 10. Barater, D., Immovilli, F., Soldati, A., et al: ‘Multistress characterization of fault mechanisms in aerospace electric actuators’, IEEE Trans. Ind. Appl., 2017, 53, pp. 11061115.
    14. 14)
      • 25. Galea, M., Gerada, C., Raminosoa, T., et al: ‘A thermal improvement technique for the phase windings of electrical machines’, IEEE Trans. Ind. Appl., 2012, 48, pp. 7987.
    15. 15)
      • 17. Bianchi, N., Pre, M.D., Grezzani, G., et al: ‘Design considerations on fractional-slot fault-tolerant synchronous motors’. IEEE Int. Conf. Electric Machines and Drives, 2005, pp. 902909.
    16. 16)
      • 11. Mecrow, B.C., Jack, A.G., Haylock, J.A., et al: ‘Fault-tolerant permanent magnet machine drives’, IEE Proc., Electr. Power Appl., 1996, 143, pp. 437442.
    17. 17)
      • 21. Sciascera, C., Giangrande, P., Papini, L., et al: ‘Analytical thermal model for fast stator winding temperature prediction’, IEEE Trans. Ind. Electron., 2017, 64, pp. 61166126.
    18. 18)
      • 18. Al-Timimy, A., Giangrande, P., Degano, M., et al: ‘Comparative study of permanent magnet-synchronous and permanent magnet-flux switching machines for high torque to inertia applications’. 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 2017, pp. 4551.
    19. 19)
      • 23. Bennett, J.W., Mecrow, B.C., Jack, A.G., et al: ‘A prototype electrical actuator for aircraft flaps’, IEEE Trans. Ind. Appl., 2010, 46, pp. 915921.
    20. 20)
      • 2. Madonna, V., Giangrande, P., Galea, M.: ‘Electrical power generation in aircraft: review, challenges and opportunities’, IEEE Trans. Transp. Electrification, 2018, 4, (3), pp. 646659, in press, doi: 10.1109/TTE.2018.2834142.
    21. 21)
      • 3. Rosero, J.A., Ortega, J.A., Aldabas, E., et al: ‘Moving towards a more electric aircraft’, IEEE Aerosp. Electron. Syst. Mag., 2007, 22, pp. 39.
    22. 22)
      • 27. Boglietti, A., Carpaneto, E., Cossale, M., et al: ‘Stator thermal model for short-time thermal transients’. 2014 Int. Conf. Electrical Machines (ICEM), 2014, pp. 14151421.
    23. 23)
      • 26. Boglietti, A., Carpaneto, E., Cossale, M., et al: ‘Stator-winding thermal models for short-time thermal transients: definition and validation’, IEEE Trans. Ind. Electron., 2016, 63, pp. 27132721.
    24. 24)
      • 16. Bianchi, N., Bolognani, S., Pre, M.D., et al: ‘Post-fault operations of five-phase motor using a full-bridge inverter’. 2008 IEEE Power Electronics Specialists Conf., 2008, pp. 25282534.
    25. 25)
      • 9. Cupertino, F., Giangrande, P., Salvatore, L., et al: ‘Model based design of a sensorless control scheme for permanent magnet motors using signal injection’. 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 31393146.
    26. 26)
      • 24. Al-Timimy, A., Degano, M., Xu, Z., et al: ‘Trade-off analysis and design of a high power density PM machine for flooded industrial pump’. IECON 2016 – 42nd Annual Conf. IEEE Industrial Electronics Society, 2016, pp. 17491754.
    27. 27)
      • 32. Welchko, B.A., Jahns, T.M., Soong, W.L., et al: ‘IPM synchronous machine drive response to symmetrical and asymmetrical short circuit faults’, IEEE Trans. Energy Convers., 2003, 18, pp. 291298.
    28. 28)
      • 20. Sciascera, C., Galea, M., Giangrande, P., et al: ‘Lifetime consumption and degradation analysis of the winding insulation of electrical machines’. Eighth IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), 2016, pp. 15.
    29. 29)
      • 14. Odhano, S.A., Giangrande, P., Bojoi, R., et al: ‘Self-commissioning of interior permanent magnet synchronous motor drives with high-frequency current injection’. 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 38523859.
    30. 30)
      • 15. Jack, A.G., Mecrow, B.C., Haylock, J.A.: ‘A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications’, IEEE Trans. Ind. Appl., 1996, 32, pp. 889895.
    31. 31)
      • 31. Welchko, B.A., Lipo, T.A., Jahns, T.M., et al: ‘Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations’, IEEE Trans. Power Electron., 2004, 19, pp. 11081116.
    32. 32)
      • 4. Giangrande, P., Cupertino, F., Pellegrino, G.: ‘Modelling of linear motor end-effects for saliency based sensorless control’. 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 32613268.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.5153
Loading

Related content

content/journals/10.1049/iet-epa.2018.5153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address