http://iet.metastore.ingenta.com
1887

Model-based flux weakening strategy for synchronous machines without additional regulators

Model-based flux weakening strategy for synchronous machines without additional regulators

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a model-based control strategy for flux weakening operation of a synchronous reluctance machine, with a methodology that is extendible to any synchronous machine. The strategy leverages in the presence of digital non-linear models that describe the relation between currents and flux linkages in the machine. Such models are usually needed for conventional maximum-torque-per-ampere control and sensorless control, but here they are exploited to achieve flux-weakening operation without the need of flux weakening regulators, ensuring a seamless transition between the operating regions of the machine. The external voltage regulation loop for flux weakening is thus eliminated and substituted by a combination of look-up tables and binary searches, which are executed within one digital control period and which generate the required current and voltage references that fulfil the drive limitations. The method can also be coupled with mechanisms to compensate for magnetic parameter inaccuracies, to achieve an accurate tracking of the reference torque. The proposed solution is simulated and validated in a laboratory test bench on an 11 kW synchronous reluctance machine.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0065
Loading

Related content

content/journals/10.1049/iet-epa.2018.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address