Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Model-based flux weakening strategy for synchronous machines without additional regulators

This study proposes a model-based control strategy for flux weakening operation of a synchronous reluctance machine, with a methodology that is extendible to any synchronous machine. The strategy leverages in the presence of digital non-linear models that describe the relation between currents and flux linkages in the machine. Such models are usually needed for conventional maximum-torque-per-ampere control and sensorless control, but here they are exploited to achieve flux-weakening operation without the need of flux weakening regulators, ensuring a seamless transition between the operating regions of the machine. The external voltage regulation loop for flux weakening is thus eliminated and substituted by a combination of look-up tables and binary searches, which are executed within one digital control period and which generate the required current and voltage references that fulfil the drive limitations. The method can also be coupled with mechanisms to compensate for magnetic parameter inaccuracies, to achieve an accurate tracking of the reference torque. The proposed solution is simulated and validated in a laboratory test bench on an 11 kW synchronous reluctance machine.

References

    1. 1)
      • 15. Zanuso, G., Peretti, L., Zigliotto, M.: ‘Permanent magnet synchronous machines flux linkage estimation with zero steady-state error and its field-programmable gate array implementation’, IET Electr. Power Appl., 2015, 9, (4), pp. 332343. Available at http://dx.doi.org/10.1049/ietepa.2014.0241.
    2. 2)
      • 13. Hadla, H., Cruz, S.: ‘Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 69506959. Available at https://doi.org/10.1109/TIE.2017.2688971.
    3. 3)
      • 4. Cintron-Rivera, J.C., Foster, S.N., Nino-Baron, C.A., et al: ‘High performance controllers for interior permanent magnet synchronous machines using look-up tables and curve-fitting methods’. Proc. IEEE Int. Electrical Machines and Drives Conf. (IEMDC), Chicago, Illinois, USA, 12–15 May 2013, pp. 268275. Available at https://doi.org/10.1109/IEMDC.2013.6556263.
    4. 4)
      • 10. Pellegrino, G., Bojoi, R., Guglielmi, P.: ‘Unified direct-flux vector control for AC motor drives’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 20932102. Available at https://doi.org/10.1109/TIA.2011.2161532.
    5. 5)
      • 8. Zhang, X., Foo, G.: ‘A robust field-weakening algorithm based on duty ratio regulation for direct torque controlled synchronous reluctance motor’, IEEE/ASME Trans. Mechatronics, 2016, 21, p. 2. Available at https://doi.org/10.1109/TMECH.2015.2469096.
    6. 6)
      • 1. Armando, E., Bojoi, R., Guglielmi, P., et al: ‘Experimental identification of the magnetic model of synchronous machines’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 21162125, Available at https://doi.org/10.1109/TIA.2013.2258876.
    7. 7)
      • 9. Pellegrino, G., Armando, E., Guglielmi, P.: ‘Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 16191627. Available at https://doi.org/10.1109/TIA.2009.2027167.
    8. 8)
      • 7. Zhang, X., Foo, G.H.B., Vilathgamuwa, D.M., et al: ‘An improved robust field-weakening algorithm for direct-torque-controlled synchronous-reluctance-motor drives’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32553264. Available at https://doi.org/10.1109/TIE.2014.2386798.
    9. 9)
      • 2. Štumberger, G., Polajžer, B., Štumberger, B., et al: ‘Evaluation of experimental methods for determining the magnetically nonlinear characteristics of electromagnetic devices’, IEEE Trans. Magn., 2005, 41, (10), pp. 40304032, Available at https://doi.org/10.1109/TMAG.2005.854992.
    10. 10)
      • 16. Zanuso, G., Peretti, L., Sandulescu, P.: ‘Stator reference frame approach for DC injection-based stator resistance estimation in electric drives’. Proc. 11th IEEE Int. Conf. on Power Electronics and Drive Systems (PEDS), Sydney, Australia, 9–12 June 2015, pp. 867872. Available at http://dx.doi.org/10.1109/PEDS.2015.7203391.
    11. 11)
      • 6. Ahn, J., Lim, S.-B., Kim, K.-C., et al: ‘Field weakening control of synchronous reluctance motor for electric power steering’, IET Electr. Power Appl., 2007, 1, (4), pp. 565570. Available at https://doi.org/10.1049/iet-epa:20060212.
    12. 12)
      • 5. Inoue, Y., Morimoto, S., Sanada, M.: ‘Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 23822389. Available at https://doi.org/10.1109/TIA.2012.2227134.
    13. 13)
      • 14. Kim, Y.-S., Sul, S.-K.: ‘Torque control strategy of an IPMSM considering the flux variation of the permanent magnet’. Proc. 42nd IEEE Industry Application Conf. Annual Meeting (IAS), New Orleans, Louisiana, USA, 23–27 September 2007, pp. 13011307. Available at https://doi.org/10.1109/07IAS.2007.202.
    14. 14)
      • 3. Peretti, L., Sandulescu, P., Zanuso, G.: ‘Self-commissioning of flux-linkage curves of synchronous reluctance machines in quasi-standstill condition’, IET Electr. Power Appl., 2015, 9, (9), pp. 642651, Available at http://dx.doi.org/10.1049/iet-epa.2015.0070.
    15. 15)
      • 12. Boazzo, B., Pellegrino, G.: ‘Model-based direct flux vector control of permanent-magnet synchronous motor drives’, IEEE Trans. Ind. Appl., 2014, 51, (4), pp. 31263136. Available at https://doi.org/10.1109/TIA.2015.2399619.
    16. 16)
      • 11. Pellegrino, G., Bojoi, R., Guglielmi, P.: ‘Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37803788. Available at https://doi.org/10.1109/TIE.2011.2178212.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0065
Loading

Related content

content/journals/10.1049/iet-epa.2018.0065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address