Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sliding-mode observer-based speed-sensorless vector control of linear induction motor with a parallel secondary resistance online identification

This study proposes a speed estimation scheme for the sensorless-vector-controlled linear induction motor (LIM) drives for medium–low-speed maglev applications, which is composed of two parts: (i) a sliding mode model reference adaptive system observer for speed estimation; and (ii) a parallel secondary resistance online identification for achieving the improvements of the proposed speed estimation scheme performance. The sliding mode observer (SMO) is established on the basis of the state space-vector model of the LIM considering the dynamic end effect. Based on SMO, both speed and secondary resistance estimation algorithms are obtained by utilising Popov's hyperstability theory. Moreover, the Lyapunov stability theory is adopted for the stability analysis of the proposed speed estimation scheme. The effectiveness of the proposed speed estimation algorithm has been verified and compared with the performance of the conventional speed estimation scheme based on single-manifold SMO by the simulation and hardware-in-the-loop tests.

References

    1. 1)
      • 13. Comanescu, M., Xu, L.: ‘Sliding-mode MRAS speed estimators for sensorless vector control of induction machine’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 146153.
    2. 2)
      • 29. Xu, W., Zhu, J.G., Zhang, Y., et al: ‘An improved equivalent circuit model of a single-sided linear induction motor’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 22772289.
    3. 3)
      • 32. Wang, K., Chen, B., Shen, G., et al: ‘Online updating of secondary time constant based on combined voltage and current mode flux observer for speed-sensorless ac drives’, IEEE Trans. Ind. Electron., 2007, 61, (9), pp. 45834593.
    4. 4)
      • 2. Jeong, J.H., Ha, C.W., Lim, J., et al: ‘Analysis and control of electromagnetic coupling effect of levitation and guidance systems for semi-high-speed maglev train considering current direction’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    5. 5)
      • 18. Agarlita, S.C., Boldea, I., Marignetti, F., et al: ‘Position sensorless control of a linear interior permanent magnet oscillatory machine, with experiments’. Proc. IEEE OPTIM, Brasov, Romania, 2010, pp. 689695.
    6. 6)
      • 33. Chen, J., Huang, J.: ‘Online decoupled stator and secondary resistances adaptation for speed sensorless induction motor drives by a time-division approach’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 45874599.
    7. 7)
      • 30. Kang, G., Kim, J., Nam, K.: ‘Parameter estimation scheme for low-speed linear induction motors having different leakage inductances’, IEEE Trans. Ind. Electron., 2003, 50, (4), pp. 708716.
    8. 8)
      • 23. Accetta, A., Cirrincione, M., Pucci, M., et al: ‘Closed-loop MRAS speed observer for linear induction motor drives’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 22792290.
    9. 9)
      • 21. Accetta, A., Cirrincione, M., Pucci, M., et al: ‘Neural sensorless control of linear induction motors by a full-order Luenberger observer considering the end effects’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 18911904.
    10. 10)
      • 20. Cirrincione, M., Accetta, A., Pucci, M., et al: ‘MRAS speed observer for high-performance linear induction motor drives based on linear neural networks’, IEEE Trans. Power Electron., 2012, 28, (1), pp. 123134.
    11. 11)
      • 19. Ryu, H.M., Ha, J.I., Sul, S.K.: ‘A new sensorless thrust control of linear induction motor’. Conf. Record of IEEE IAS Annual Meeting, Rome, Italy, 2000, pp. 16551661.
    12. 12)
      • 34. Duncan, J.: ‘Linear induction motor-equivalent-circuit model’, IEE Proc B – Electr. Power Appl., 1983, 130, (1), pp. 5157.
    13. 13)
      • 22. Alonge, F., Cirrincione, M., D'Ippolito, F., et al: ‘Descriptor-type Kalman filter and TLS EXIN speed estimate for sensorless control of a linear induction motor’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 37543766.
    14. 14)
      • 27. Thomas, J., Hansson, A.: ‘Speed tracking of a linear induction motor-enumerative nonlinear model predictive control’, IEEE Trans. Control Syst. Technol., 2013, 21, (5), pp. 19561962.
    15. 15)
      • 7. Kubota, H., Matsuse, K., Nakano, T.: ‘DSP-based speed adaptive flux observer of induction motor’, IEEE Trans. Ind. Appl., 1993, 29, (2), pp. 344348.
    16. 16)
      • 35. Pucci, M.: ‘State space-vector model of linear induction motors’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 195207.
    17. 17)
      • 26. Holakooie, M.H., Ojaghi, M., Taheri, A.: ‘Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor’, ISA Trans., 2016, 60, pp. 96108.
    18. 18)
      • 12. Zaky, M.S., Khater, M.M., Shokralla, S.S., et al: ‘Wide-speed-range estimation with online parameter identification schemes of sensorless induction motor drives’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16991707.
    19. 19)
      • 5. Silva, W.L., Lima, A.M.N., Oliveira, A.: ‘Speed estimation of an induction motor operating in the nonstationary mode by using secondary slot harmonics’, IEEE Trans. Instrum. Meas., 2015, 64, (4), pp. 984994.
    20. 20)
      • 16. Lascu, C., Boldea, I., Blaabjerg, F.: ‘Direct torque control of sensorless induction motor drives: a sliding-mode approach’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 582590.
    21. 21)
      • 1. Lee, H.W., Kim, K.C., Ju, L.: ‘Review of maglev train technologies’, IEEE Trans. Magn., 2006, 42, (7), pp. 19171925.
    22. 22)
      • 24. Liu, P., Hung, C.Y., Chiu, C. S, et al: ‘Sensorless linear induction motor speed tracking using fuzzy observers’, IET Elect. Power Appl., 2011, 5, (4), pp. 325334.
    23. 23)
      • 6. Caruana, C., Asher, G.M., Sumner, M.: ‘Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 225238.
    24. 24)
      • 28. Xu, W., Zhu, J.G., Zhang, Y., et al: ‘Equivalent circuits for single-sided linear induction motors’, IEEE Trans. Ind. Appl., 2010, 46, (6), pp. 24102423.
    25. 25)
      • 3. Holtz, J.: ‘Sensorless control of induction machines – with or without signal injection?’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 730.
    26. 26)
      • 15. Lascu, C., Trzynadlowski, A.M.: ‘Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive’, IEEE Trans. Ind. Appl., 2004, 40, (1), pp. 170177.
    27. 27)
      • 25. Hung, C.Y., Liu, P., Lian, K.Y.: ‘Fuzzy virtual reference model sensorless tracking control for linear induction motors’, IEEE Trans. Cybern., 2013, 43, (3), pp. 970981.
    28. 28)
      • 11. Marcetic, D.P., Vukosavic, S.N.: ‘Speed-sensorless AC drives with the secondary time constant parameter update’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 26182625.
    29. 29)
      • 4. Zhao, L., Huang, J., Chen, J., et al: ‘A parallel speed and secondary time constant identification scheme for indirect field oriented induction motor drives’, IEEE Trans. Ind. Electron., 2016, 31, (9), pp. 64946503.
    30. 30)
      • 9. Zaky, M.S., Metwaly, M.K.: ‘Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations’, IEEE J. Emerg. Sel. Topics Power. Electron., 2016, 4, (4), pp. 14161429.
    31. 31)
      • 14. Proca, A.B., Keyhani, A.: ‘Sliding-mode flux observer with online secondary parameter estimation for induction motors,IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 716723.
    32. 32)
      • 36. Boldea, I.: ‘Linear electric machines, drives, and MAGLEVs’ (CRC Press, FL, USA, 2013).
    33. 33)
      • 17. Lascu, C., Boldea, I., Blaabjerg, F.: ‘A class of speed-sensorless sliding-mode observers for high-performance induction motor drives’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 33943403.
    34. 34)
      • 8. Yang, G., Chin, T.H.: ‘Adaptive-speed identification scheme for a vector-controlled speed sensorless inverter-induction motor drive’, IEEE Trans. Ind. Appl., 1993, 29, (4), pp. 820825.
    35. 35)
      • 10. Maiti, S., Chakraborty, C., Hori, Y., et al: ‘Model reference adaptive controller-based secondary resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 594601.
    36. 36)
      • 31. Alonge, F., Cirrincione, M., D'Ippolito, F., et al: ‘Parameter identification of linear induction motor model in extended range of operation by means of input–output data’, IEEE Trans. Ind. Appl., 2012, 50, (2), pp. 959972.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2018.0049
Loading

Related content

content/journals/10.1049/iet-epa.2018.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address