http://iet.metastore.ingenta.com
1887

Rotor position estimation scheme with harmonic ripple attenuation for sensorless controlled permanent magnet synchronous motors

Rotor position estimation scheme with harmonic ripple attenuation for sensorless controlled permanent magnet synchronous motors

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To achieve high-performance sensorless control of permanent magnet motors with non-sinusoidal back electromotive force (EMF), an improved sliding mode observer (SMO) adopting synchronous rotating low-pass filter (SRLPF) is proposed. The SRLPF is utilised to reduce the back-EMF harmonics and extract the fundamental component. Different from the traditional rotor position observer, the proposed observer can calculate the rotor position with the back-EMF fundamental component. Owing to the decrease in the influence of non-sinusoidal back-EMF, the estimated rotor position harmonic ripple error can be greatly reduced. Then, the high estimated accuracy and excellent sensorless control performance can be obtained. In addition, the proposed strategy is easy for implementation. With the comparison between the traditional SMO and the proposed observer, the experiments of the system steady-state error, the speed tracking performance, and the disturbance rejection ability in the speed range from 60 r/min to the rated speed 750 r/min are presented. The validity of the proposed method is conformed.

References

    1. 1)
      • 1. Kalluf, F.J.H., Isfanuti, A.S., Tutelea, L.N., et al: ‘1-kw 2000–4500 r/min ferrite PMSM drive: comprehensive characterization and two sensorless control options’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 39803989.
    2. 2)
      • 2. Arellano-Padilla, J., Sumner, M., Gerada, C.: ‘Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method’, IET Electr. Power Appl., 2016, 10, (1), pp. 5462.
    3. 3)
      • 3. Xu, P., Zhu, Z.: ‘Carrier signal injection-based sensorless control for permanent magnet synchronous machine drives with tolerance of signal processing delays’, IET Electr. Power Appl., 2017, 11, (6), pp. 11401149.
    4. 4)
      • 4. Yang, S.C., Hsu, Y.L.: ‘Full speed region sensorless drive of permanent magnet machine combining saliency-based and back-EMF-based drive’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 10921101.
    5. 5)
      • 5. Liang, D., Li, J., Qu, R.: ‘Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36723682.
    6. 6)
      • 6. Kim, S.I., Im, J.H., Song, E.Y., et al: ‘A new rotor position estimation method of IPMSM using all-pass filter on high-frequency rotating voltage signal injection’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 64996509.
    7. 7)
      • 7. Hejny, R.W., Lorenz, R.D.: ‘Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 13371343.
    8. 8)
      • 8. Lascu, C., Boldea, I., Blaabjerg, F.: ‘A class of speed-sensorless sliding-mode observers for high-performance induction motor drives’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 33943403.
    9. 9)
      • 9. Lu, X., Lin, H., Han, J.: ‘Load disturbance observer-based control method for sensorless PMSM drive’, IET Electr. Power Appl., 2016, 10, (8), pp. 735743.
    10. 10)
      • 10. Park, Y., Sul, S.K.: ‘Sensorless control method for PMSM based on frequency-adaptive disturbance observer’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (2), pp. 143151.
    11. 11)
      • 11. Zhao, Y., Qiao, W., Wu, L.: ‘An adaptive quasi-sliding-mode rotor position observer-based sensorless control for interior permanent magnet synchronous machines’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 56185629.
    12. 12)
      • 12. Lascu, C., Andreescu, G.D.: ‘Self-commissioning of electrical parameters for PMSM in sensorless drives’, IEEE Electrical Machines & Power Electronics, September 2015, pp. 605610.
    13. 13)
      • 13. Kung, Y.S., Thanh, N.P., Wang, M.S.: ‘Design and simulation of a sensorless permanent magnet synchronous motor drive with microprocessor-based PI controller and dedicated hardware EKF estimator’, Appl. Math. Model., 2015, 39, (19), pp. 58165827.
    14. 14)
      • 14. Zhang, H., Wang, P., Han, B.: ‘Rotor position measurement for high-speed permanent magnet synchronous motors based on fuzzy PI MRAS’. Proc. Chin. Soc. Electr. Eng., 2014, 34, (12), pp. 18891896.
    15. 15)
      • 15. Lee, J., Hong, J., Nam, K., et al: ‘Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer’, IEEE Trans. Power Electron., 2010, 25, (2), pp. 290297.
    16. 16)
      • 16. Zhang, G., Wang, G., Xu, D.G., et al: ‘ADALINE network based PLL for position sensorless interior permanent magnet synchronous motor drives’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 14501460.
    17. 17)
      • 17. Zhu, X., Xiang, Z., Zhang, C., et al: ‘Co-reduction of torque ripple for outer rotor flux-switching PM motor using systematic multi-level design and control schemes’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11021112.
    18. 18)
      • 18. Evans, D.J., Zhu, Z.Q.: ‘Novel partitioned stator switched flux permanent magnet machines’, IEEE Trans. Magn., 2015, 51, (1), p. 8100114.
    19. 19)
      • 19. Yin, J., Zhu, X., Quan, L., et al: ‘Comprehensive multi-objective scalarisation optimisation of a permanent magnet machine with correlation parameters stratified method’, IET Electr. Power Appl., 2017, 11, (1), pp. 7279.
    20. 20)
      • 20. Xiang, Z., Zhu, X., Quan, L., et al: ‘Multilevel design optimization and operation of a brushless double mechanical port flux-switching permanent-magnet motor’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 60426054.
    21. 21)
      • 21. Zhao, Y., Qiao, W., Wu, L.: ‘Dead-time effect analysis and compensation for a sliding-mode position observer-based sensorless IPMSM control system’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 25282535.
    22. 22)
      • 22. Shen, G., Yao, W., Chen, B., et al: ‘Automeasurement of the inverter output voltage delay curve to compensate for inverter nonlinearity in sensorless motor drives’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 55425553.
    23. 23)
      • 23. Lin, T.C., Zhu, Z.Q., Liu, J.M.: ‘Improved rotor position estimation in sensorless-controlled permanent-magnet synchronous machines having asymmetric-EMF with harmonic compensation’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 61316139.
    24. 24)
      • 24. Zhang, G., Wang, G., Xu, D., et al: ‘Multiple-AVF cross-feedback-network-based position error harmonic fluctuation elimination for sensorless IPMSM drives’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 821831.
    25. 25)
      • 25. Tong, L.Q., Qian, Z.M., Peng, F.Z.: ‘Synchronous reference frame harmonic detection modeling and digital realization’. Proc. Chin. Soc. Electr. Eng., 2009, 29, (19), pp. 111117.
    26. 26)
      • 26. Akagi, H., Kanazawa, Y., Nabae, A.: ‘Instantaneous reactive power compensators comprising switching devices without energy storage components’, IEEE Trans. Ind. Appl., 1984, IA-20, (3), pp. 625630.
    27. 27)
      • 27. Boldea, I., Codruta Paicu, M., Andreescu, G.-D., et al: ‘‘Active flux’ DTFC-SVM sensorless control of IPMSM’, IEEE Trans. Energy Convers., 2009, 24, (2), pp. 314322.
    28. 28)
      • 28. Wang, G., Li, T., Zhang, G., et al: ‘Position estimation error reduction using recursive-least-square adaptive filter for model-based sensorless interior permanent-magnet synchronous motor drives’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 51155125.
    29. 29)
      • 29. Jung, S.Y., Nam, K.: ‘PMSM control based on edge-field hall sensor signals through ANF-PLL processing’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 51215129.
    30. 30)
      • 30. Zhu, X., Xiang, Z., Quan, L., et al: ‘Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 53535366.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0858
Loading

Related content

content/journals/10.1049/iet-epa.2017.0858
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address