Parameters and performance analysis of a dual stator composite rotor axial flux induction motor by an analytical method

Parameters and performance analysis of a dual stator composite rotor axial flux induction motor by an analytical method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel dual stator composite rotor axial flux induction motor (DSCRAFIM) whose solid rotor is coated with copper layers. A novel multi-slice and multi-layer method is developed and applied to analyse the three-dimensional electromagnetic field distribution in DSCRAFIM. In the application of this analytical method, DSCRAFIM is equivalent to a finite set of equal-width and increasing-length double primary composite secondary linear induction motors, whose steel secondary is divided into a finite set of equal-height layers. The surface impedance theory is applied to derive the improved equivalent circuit model (IECM) of DSCRAFIM, which considers the coupling relationship between dual stator windings. The accuracy of this IECM is then verified by both finite-element analysis and experimental test.


    1. 1)
      • 1. Ghaemi, E., Mirsalim, M.: ‘Design and prototyping of a new flywheel energy storage system’, IET Electr. Power Appl., 2017, 9, (11), pp. 15171526.
    2. 2)
      • 2. Mukoyama, S., Nakao, K., Sakamoto, H., et al: ‘Development of superconducting magnetic bearing for 300 kW flywheel energy storage system’, IEEE Trans. Appl. Supercond., 2017, 27, (4), pp. 14.
    3. 3)
      • 3. Gieras, J.F., Saari, J.: ‘Performance calculation for a high-speed solid-rotor induction motor’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 26892700.
    4. 4)
      • 4. Pyrhonen, J., Janne, N., Panu, K., et al: ‘High-speed high-output solid-rotor induction-motor technology for gas compression’, IEEE Trans. Ind. Electron., 2009, 57, (1), pp. 272280.
    5. 5)
      • 5. Xu, W., Zhu, J.G., Zhang, Y., et al: ‘An improved equivalent circuit model of a single-sided linear induction motor’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 22772289.
    6. 6)
      • 6. Williamson, S., Robinson, M.J.: ‘Calculation of cage induction motor equivalent circuit parameters using finite elements’, IEE Proc. B, Electr. Power Appl., 1991, 138, (5), pp. 264276.
    7. 7)
      • 7. Yamazaki, K.: ‘Comparison of induction motor characteristics calculated from electromagnetic field and equivalent circuit determined by 3D FEM’, IEEE Trans. Magn., 2002, 36, (4), pp. 18811885.
    8. 8)
      • 8. Lubin, T., Rezzoug, A.: ‘3–D analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions’, IEEE Trans. Magn., 2015, 51, (10), pp. 112.
    9. 9)
      • 9. Boughrara, K., Dubas, F., Ibtiouen, R.: ‘2-D analytical prediction of eddy currents, circuit model parameters, and steady-state performances in solid rotor induction motors’, IEEE Trans. Magn., 2012, 50, (12), pp. 114.
    10. 10)
      • 10. Zhu, X., Fan, Y., Lv, G., et al: ‘Modeling and torque analysis of a disc induction motor’, Proc. CSEE, 2010, 30, (24), pp. 6974.
    11. 11)
      • 11. Tiegna, H., Bellara, A., Amara, Y., et al: ‘Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots’, IEEE Trans. Magn., 2012, 48, (3), pp. 12121226.
    12. 12)
      • 12. Chalmers, B.J., Hamdi, E.S..: ‘Multi-layer analysis of composite-rotor induction motor’, Electric Machines Power Syst., 1982, 7, (5), pp. 331338.
    13. 13)
      • 13. Huang, Z., Wang, S., Ni, S.: ‘2D calculation methods of equivalent circuit parameters in smooth solid rotor induction motor’, Proc. CSEE, 2016, 36, (9), pp. 25052512.
    14. 14)
      • 14. Yang, T.L., Zhou, L.L.: ‘Performance calculation for double-sided linear induction motor with short secondary’. Int. Conf. Electrical Machines and Systems IEEE, Wuhan, China, 2008, pp. 34783483.
    15. 15)
      • 15. Zhang, Z., Shi, L., Li, Y.: ‘Characteristics of double sided linear induction motors with ladder-slit type secondary’, Trans. China Electrotech. Soc., 2014, 29, (3), pp. 103110.
    16. 16)
      • 16. Freeman, E.M.: ‘Travelling waves in induction machines: input impedance and equivalent circuits’, Proc. Inst. Electr. Eng., 1968, 115, (12), pp. 17721776.
    17. 17)
      • 17. Freeman, E.M.: ‘Equivalent circuits from electromagnetic theory low-frequency induction devices’, Proc. Inst. Electr. Eng., 1974, 121, (10), pp. 11171121.
    18. 18)
      • 18. Tong, Z.: ‘The sublayer impedance theory for analysing double-layer solid rotor induction machines’, Trans. China Electrotech. Soc., 1993, 5, (2), pp. 1822.
    19. 19)
      • 19. Huang, Z., Wang, S., Ni, S.: ‘Parameter calculation and performance analysis of solid rotor induction machines using 3D subsectional and multi-layer method’, Trans. China Electrotech. Soc., 2016, 31, (23), pp. 1521.
    20. 20)
      • 20. Huang, Z., Wang, S., Sun, Y., et al: ‘Calculation and comparison of rotor end factors of solid rotor induction machines with axial slits’, Trans. China Electrotech. Soc., 2017, 37, (4), pp. 12081215.
    21. 21)
      • 21. Tang, Y., Yanping, L.: ‘The analysis and calculation of the electromagnetic field in a motor’ (China Machine Press, Beijing, China, 2010).

Related content

This is a required field
Please enter a valid email address