http://iet.metastore.ingenta.com
1887

Parameters and performance analysis of a dual stator composite rotor axial flux induction motor by an analytical method

Parameters and performance analysis of a dual stator composite rotor axial flux induction motor by an analytical method

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel dual stator composite rotor axial flux induction motor (DSCRAFIM) whose solid rotor is coated with copper layers. A novel multi-slice and multi-layer method is developed and applied to analyse the three-dimensional electromagnetic field distribution in DSCRAFIM. In the application of this analytical method, DSCRAFIM is equivalent to a finite set of equal-width and increasing-length double primary composite secondary linear induction motors, whose steel secondary is divided into a finite set of equal-height layers. The surface impedance theory is applied to derive the improved equivalent circuit model (IECM) of DSCRAFIM, which considers the coupling relationship between dual stator windings. The accuracy of this IECM is then verified by both finite-element analysis and experimental test.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0786
Loading

Related content

content/journals/10.1049/iet-epa.2017.0786
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address