http://iet.metastore.ingenta.com
1887

Nine-phase IM for hybridisation of a compact vehicle by parallel TTR architecture

Nine-phase IM for hybridisation of a compact vehicle by parallel TTR architecture

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the usage of a nine-phase induction motor (IM) in internal combustion engine vehicle hybridisation. Aiming to minimise structural changes, the parallel-through-the-road (TTR) hybrid architecture was chosen. First, a real vehicle was experimented on the mobility technology centre Federal University of Minas Gerais (CTM-Universidade Federal de Minas Gerais (UFMG) laboratory) to get its characteristics. After that, this technical information was used to model and simulate on the software advanced vehicle simulator (ADVISOR). The simulated model results were compared with the experimental tests results realised with the vehicle on the tests track and CTM-UFMG. Posteriorly, through a validated vehicle model, a drivetrain powered by a prototype of a nine-phase IM was integrated into the rear axle to do the hybridisation process simulation. To do that some structures modifications were necessary on ADVISOR since this tool does not include the parallel-TTR architecture. Vehicles modelled were simulated using the urban driving dynamometer schedules. Finally, the comparative analyses of simulation results show the improvements in fuel consumption, vehicle efficiency, emission gas, and the nine-phase motor operation in a hybrid TTR.

References

    1. 1)
      • 1. Silva, R.Á., Pires, I.A.: ‘Análise comparativa da hibridização série-paralela de um veículo com características de um nacional compacto De 999cc’. 13 Salão Latino Americano de Veículos Elétricos, São Paulo - SP, 2017, pp. 120.
    2. 2)
      • 2. Silva, R.Á.: ‘Avaliação da hibridização de um veículo nacional compacto utilizando a arquitetura paralela de eixos separados’, M.Sc. thesis, (Universidade Federal de Minas Gerais – UFMG, Belo Horizonte-MG, Brazil, 2017).
    3. 3)
      • 3. Emadi, A., Rajashekara, K., Williamson, S.S., et al: ‘Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations’, IEEE Trans. Veh. Technol., 2005, 54, (3), pp. 763770.
    4. 4)
      • 4. Poullikkas, A.: ‘Sustainable options for electric vehicle technologies’, Renew. Sustain. Energy Rev., 2015, 41, pp. 12771287.
    5. 5)
      • 5. Silva, R.Á., Pires, I.A.: ‘Aspectos tecnológicos e oportunidades para os veículos elétricos e híbridos no mercado nacional’. 12th Salão Latino Americano de Veículos Elétricos, São Paulo - SP, 2016, no. Mci, pp. 120..
    6. 6)
      • 6. Lo Calzo, G., Vakil, G., Mecrow, B., et al: ‘Integrated motor drives: state of the art and future trends’, IET Electr. Power Appl., 2016, 10, (8), pp. 757771.
    7. 7)
      • 7. Pedrosa, D., Monteiro, V., Gonçalves, H., et al: ‘A case study on the conversion of an internal combustion engine vehicle into an electric vehicle’. Vehicle Power and Propulsion Conf. (VPPC), Coimbra, Portugal, 2014, pp. 446451..
    8. 8)
      • 8. Potgieter, J.H.J., Fraser, A.G., Mcculloch, M.D.: ‘Thermal management in a high speed switched reluctance machine for traction applications’. Eighth IET Int. Conf. Power Electronics, Machines and Drives, Glasgow, UK, 2016, pp. 16.
    9. 9)
      • 9. Gama-Valdez, M.A., Tucker, M.R.: ‘On model-based design for fast-prototyping battery’. Fifth IET Hybrid and Electric Vehicles Conf. (HEVC 2014), pp., 2014, pp. 16.
    10. 10)
      • 10. Rizoug, N., Feld, G., Bouhali, O., et al: ‘Micro-hybrid vehicle supplied by a multi-source storage system (battery and supercapacitors): optimal power management’. Seventh IET Int. Conf. Power Electronics, Machines and Drives, 2014, pp. 15..
    11. 11)
      • 11. Kim, K., Jeong, J., Kim, H., et al: ‘Analysis of vehicle status in various driving situations for a separated axle torque combination parallel hybrid system using forward simulator’. 2014 IEEE Vehicle Power and Propulsion Conf. (VPPC 2014), Coimbra, Portugal, 2014, pp. 14.
    12. 12)
      • 12. Gao, D.W., Mi, C., Emadi, A.: ‘Modeling and simulation of electric and hybrid vehicles’, Hybrid Electr. Veh., 2011, 95, (4), pp. 363384.
    13. 13)
      • 13. Same, A., Stipe, A., Grossman, D., et al: ‘A study on optimization of hybrid drive train using advanced vehicle simulator (ADVISOR)’, J. Power Sources, 2010, 195, (19), pp. 69546963.
    14. 14)
      • 14. Zhao, Z.: ‘Study on control strategy and simulation for parallel hybrid electric vehicle’, Chin. J. Mech. Eng., 2005, 41, p. 13.
    15. 15)
      • 15. Yafu, Z., Cheng, C.: ‘Study on the powertrain for ISG mild hybrid electric vehicle’. 2008 IEEE Vehicle Power and Propulsion Conf. (VPPC 2008), Harbin, China, 2008, pp. 15.
    16. 16)
      • 16. Xiong, W.X.W., Wu, Z.W.Z., Yin, C.Y.C., et al: ‘Economical comparison of three hybrid electric car solutions’. 2008 IEEE Vehicle Power and Propulsion Conf., 2008, pp. 16.
    17. 17)
      • 17. Yang, Y., Shih, Y., Chen, J.: ‘Real-time driving strategy for a pure electric vehicle with multiple traction motors by particle swarm optimization’. Seventh IET Int. Conf. Power Electronics, Machines and Drives, Manchester, UK, 2014, pp. 16.
    18. 18)
      • 18. Riley, C.P., Sawant, N.P., Ilea, D., et al: ‘Simulation based design of reluctance motors for traction applications in hybrid and electric vehicles’. Power Electronics, Machines and Drives (PEMD), Manchester, UK, 2014, pp. 16.
    19. 19)
      • 19. Mathews, J.C., Walp, K.J., Molen, G.M.: ‘Development and implementation of a control system for a parallel hybrid powertrain’. IEEE Vehicle Power and Propulsion Conf., Windsor, UK, 2006.
    20. 20)
      • 20. Fallahi, N., Niasar, A.H.: ‘Intelligent energy management strategy for a parallel hybrid vehicle’, Intell. Syst. Electr. Eng., 2014, 4, (4), pp. 5162.
    21. 21)
      • 21. Zulkifli, S.A., Mohd, S., Saad, N.: ‘Split-parallel through-the-road hybrid electric vehicle: operation, power flow and control modes’. 2015 IEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, USA, 2015.
    22. 22)
      • 22. Ehsani, M., Gao, Y., Emadi, A.: ‘Modern electric hybrid electric and fuel cell vehicles’, (CRC Press, New York, 2nd edn. 2010).
    23. 23)
      • 23. Bastos, R.R., Valle, R.M., Nau, S.L., et al: ‘Modelling and analysis of a nine-phase induction motor with third harmonic current injection’. Ninth Int. Conf. Power Electronics Asia, Seoul, South Korea, 2015, pp. 688694.
    24. 24)
      • 24. Bastos, R., Silva, L., Valle, R., et al: ‘Modelagem de uma máquina de indução de nove fases’. SWGE Inf. Br, 2014, pp. 19811988.
    25. 25)
      • 25. Osama, M., Lipo, T.A.: ‘Modeling and analysis of a wide-speed-range induction motor drive based on electronic pole changing’, IEEE Trans. Ind. Appl., 1997, 33, (5), pp. 11771184.
    26. 26)
      • 26. Levi, E., Bojoi, R., Profumo, F., et al: ‘Multiphase induction motor drives – a technology status review’, IET Electr. Power Appl., 2007, 1, pp. 489516.
    27. 27)
      • 27. Zeraoulia, M., Benbouzid, M.E.H., Diallo, D.: ‘Electric motor drive selection issues for HEV propulsion systems: a comparative study’, IEEE Trans. Veh. Technol., 2006, 55, (6), pp. 17561764.
    28. 28)
      • 28. Kelly, J.W., Strangas, E.G., Miller, J.M.: ‘Control of a continuously operated pole-changing induction machine’. IEMDC 2003 – IEEE Int. Electrical Machine Drives Conf., 2003, 1, pp. 211217.
    29. 29)
      • 29. Kelly, J., Strangas, E.: ‘Torque control during pole-changing transition of a 3:1 pole induction machine’. Machine Systems 2007 ICEMS, Seoul, 2007, pp. 17231728.
    30. 30)
      • 30. Ojeda, J., Bouker, H., Vido, L., et al: ‘Synchronous motor for EV/HEV applications’. Eighth IET Int. Conf. Power Electronics, Machines and Drives, Glasgow, UK, 2016.
    31. 31)
      • 31. de Souza, T.S., Bastos, R.R., Filho, B.J.C.: ‘Modeling and control of a nine-phase induction machine with open phases’. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, 2017, pp. 19.
    32. 32)
      • 32. Subotic, I., Bodo, N., Levi, E., et al: ‘Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics’, IET Electr. Power Appl., 2016, 10, (3), pp. 217229.
    33. 33)
      • 33. de Souza, T.S., Bastos, R.R., Filho, B.J.C.: ‘Fault-tolerant operation of a nine-phase induction machine with open phases’. 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, 2017, pp. 19.
    34. 34)
      • 34. Souza, T.S., Bastos, R.R., Filho, B.J.C.: ‘Fault analysis in an inverter-fed nine-phase induction machine’. Ninth Annual IEEE Energy Conversion Congress & Exposition (ECCE 2017), pp., 2017, pp. 371378.
    35. 35)
      • 35. Rodrigues, M.C.B.P., Souza, I.D.N., Ferreira, A.A., et al: ‘Simultaneous active power filter and G2V (or V2G) operation of EV on-board power electronics’. IECON 2013 – 39th Annual Conf. IEEE Industrial Electronics Society, Vienna, Austria, 2013, pp. 46844689.
    36. 36)
      • 36. Rodrigues, M.C.B.P., Souza, I.D.N., Ferreira, A.A., et al: ‘Integrated bidirectional single-phase vehicle-to-grid interface with active power filter capability’. 2013 Brazilian Power Electronics Conf., 2013, pp. 9931000.
    37. 37)
      • 37. Shen, C., Shan, P., Gao, T.: ‘A comprehensive overview of hybrid electric vehicles’, Int. J. Veh. Technol., 2011, 2011, pp. 17.
    38. 38)
      • 38. Markel, T., Brooker, A., Hendricks, T., et al: ‘ADVISOR: a systems analysis tool for advanced vehicle modelling’, J. Power Sources, 2002, 110, pp. 255266.
    39. 39)
      • 39. Johnson, V.: ‘Battery performance models in ADVISOR’, J. Power Sources, 2002, 110, (2), pp. 321329.
    40. 40)
      • 40. Zulkifli, S.A., Mohd, S., Maharun, M., et al: ‘Development of a retrofit split-axle parallel hybrid electric vehicle with in-wheel motors’. ICIAS 2012 – 2012 Fourth Int. Conf. Intelligent and Advanced Systems. A Conf. World Engineering, Science and Technology Congress – Conf. Proc., 2012, vol. 2, pp. 582587.
    41. 41)
      • 41. Bradai, S., Ghariani, M., Guermazi, A.: ‘Study of the traction chains of different models of electric vehicles with the ADVISOR tool’. IREC 2016 – Seventh Int. Renewable Energy Congress, Hammamet, Tunisia, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0783
Loading

Related content

content/journals/10.1049/iet-epa.2017.0783
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address