access icon free Effect of damper winding on accuracy of wound-rotor resolver under static-, dynamic-, and mixed-eccentricities

Most of the resolvers used in high precision servomechanism are two-pole, wound-rotor ones. The configuration of their stator winding is based on variable-turn, on-tooth method. However, there is different opportunity for their rotor: using distributed winding or on-tooth one. Furthermore, based on the operating principle of the resolver its rotor needs a single phase winding. While, in many practical cases a two-phase winding that one of them is short-circuited (damper winding) is employed for rotor. In this study, the effect of different configurations for rotor winding on the resolver performance in terms of the average of absolute position error, maximum position error, and total harmonic distortion of induced voltages envelopes is investigated. Then, the effect of damper winding on the performance of the resolver under static-, dynamic-, and mixed-eccentricities are studied. In this study, all simulations are performed using three-dimensional time stepping finite-element method and finally, the experimental tests on the studied sensor using a precision test setup are employed to approve the simulation results.

Inspec keywords: rotors; stators; harmonic distortion; servomechanisms; finite element analysis

Other keywords: two-phase winding; stator winding; mixed-eccentricities; variable-turn; rotor winding; on-tooth method; wound-rotor ones; 3D time stepping finite-element method; single phase winding; maximum position error; operating principle; wound-rotor resolver; high precision servomechanism; absolute position error; resolver performance

Subjects: Numerical analysis

References

    1. 1)
      • 13. Kim, K.-C.: ‘Analysis on the characteristics of variable reluctance resolver considering uneven magnetic fields’, IEEE Trans. Magn., 2013, 49, (7), pp. 38583861.
    2. 2)
      • 3. Nasiri-Gheidari, Z.: ‘Design, analysis, and prototyping of a new wound-rotor axial flux brushless resolver’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 276283, doi: 10.1109/TEC.2016.2604858.
    3. 3)
      • 8. Zhang, J., Wu, Z.: ‘Automatic calibration of resolver signals via state observers’, Meas. Sci. Technol., 2014, 25, 095008 (9pp).
    4. 4)
      • 9. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘A novel variable reluctance resolver with nonoverlapping tooth-coil windings’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 784794.
    5. 5)
      • 5. Nasiri-Gheidari, Z.: ‘Design, performance analysis, and prototyping of linear resolvers’, IEEE Energy Convers., 2017, 32, (4), pp. 13761385.
    6. 6)
      • 20. Shang, J., Wang, H., Chen, M., et al: ‘The effects of stator and rotor eccentricities on measurement accuracy of axial flux variable-reluctance resolver with sinusoidal rotor’. 2014 17th Int. Conf. on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014, pp. 12061209.
    7. 7)
      • 2. Zhang, J., Wu, Z.: ‘Composite state observer for resolver to-digital conversion’, Meas. Sci. Technol., 2017, 28, 065103 (10pp).
    8. 8)
      • 4. Tolstykh, O.A., Balkovoi, A.P., Tiapkin, M.G., et al: ‘Research and development of the 4X-variable reluctance resolver’. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conf. (EIConRusNW), St. Petersburg, Russia, 2–3 February 2016.
    9. 9)
      • 11. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘Analysis of windings in variable reluctance resolver’, IEEE Trans. Magn., 2015, 51, (5), pp. 19.
    10. 10)
      • 25. Arab-Khaburi, D., Tootoonchian, F., Nasiri-Gheidari, Z.: ‘Dynamic performance prediction of brushless resolver’, Iran. J. Electr. Electron. Eng., 2008, 8, (4), pp. 94103. Available at http://ijeee.iust.ac.ir/browse.php?a_id=70%sid=1%slc_lang=en.
    11. 11)
      • 15. Kim, J.K., Lee, C.S.: ‘Angular position error detection of variable reluctance resolver using simulation-based approach’, Int. J. Automot. Technol., 2013, 14, (4), pp. 651658.
    12. 12)
      • 28. Saneie, H., Nasiri-Gheidari, Z., Tootoonchian, F.: ‘An analytical model for performance prediction of linear resolver’, IET Electr. Power Appl., 2017, 11, (8), pp. 14571465.
    13. 13)
      • 16. Neidig, N., Werner, Q., Balluff, M., et al: ‘The influence of geometrical deviations of electrical machine systems on the signal quality of the variable reluctance resolver’. 2016 6th Int. Electric Drives Production Conf. (EDPC), Nuremberg, Germany, 30 November–1 December 2016.
    14. 14)
      • 19. Nasiri-Gheidari, Z., Alipour-Sarabi, R., Tootoonchian, F., et al: ‘Performance evaluation of disk type variable reluctance resolvers’, IEEE Sens. J., 2017, 17, (13), pp. 40374045.
    15. 15)
      • 1. Ge, X., Ahu, Z.Q.: ‘A novel design of rotor contour for variable reluctance resolver by injecting auxiliary air-gap permeance harmonics’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 345353.
    16. 16)
      • 7. Alipour-Sarabi, R., Nasiri-Gheidari, Z., Tootoonchian, F., et al: ‘Effects of physical parameters on the accuracy of axial flux resolvers’, IEEE Trans. Magn., 2017, 53, (4), pp. 111, doi: 10.1109/TMAG.2016.2645163.
    17. 17)
      • 12. Nasiri-Gheidari, Z., Tootoonchian, F.: ‘The influence of mechanical faults on the position error of an axial flux brushless resolver without rotor windings’, IET Electr. Power Appl., 2017, 11, (4), pp. 613621.
    18. 18)
      • 23. Hou, C.C., Chiang, Y.H., Lo, C.P.: ‘Experimental verification of the resolver dynamic model and control designs’. 2013 IEEE 10th Int. Conf. on Power Electronics and Drive Systems (PEDS), Kitakyushu, 2013, pp. 496499.
    19. 19)
      • 14. Nirei, M., Yamamoto, Y., Kitazawa, K., et al: ‘Angular error analysis of an 8X-VR resolver with an eccentric rotor’, J. Magn. Magn. Mater., 2002, 242–245, (2), pp. 12021205.
    20. 20)
      • 17. Kim, K.-C., Hwang, S.-J., Sung, K.-Y., et al: ‘A study on the fault diagnosis analysis of variable reluctance resolver for electric vehicle’. 2010 IEEE SENSORS Conf., Kona, HI, USA, 1–4 November 2010, pp. 290295.
    21. 21)
      • 26. Arab-Khaburi, D., Tootoonchian, F., Nasiri-Gheidari, Z.: ‘Parameter identification of a brushless resolver using charge response of stator current’, Iran. J. Electr. Electron. Eng., 2007, 2, (3), pp. 4252. Available at http://ijeee.iust.ac.ir/article-A-10-3-24-1-en.html.
    22. 22)
      • 22. Tootoonchian, F., Abbaszadeh, K., Ardebili, M.: ‘Novel axial flux brushless resolver analysis and optimization using 3D finite element and D-Q model method’, Iran. J. Electr. Electron. Eng., 2012, 8, (3), pp. 243258. Available at http://ijeee.iust.ac.ir/files/site1/user_files_5e3495/eng/farid_tootoonchian-A-10-263-5-be880d6.pdf.
    23. 23)
      • 21. Tootoonchian, F., Abbaszadeh, K., Ardebili, M.: ‘A new technique for analysis of static eccentricity in axial flux resolver’, Meas. Sci. Rev., 2012, 12, (1), pp. 1420. Available at http://www.measurement.sk/2012/Tootoonchian.pdf.
    24. 24)
      • 10. Ge, X., Zhu, Z.Q., Ren, R., et al: ‘A novel variable reluctance resolver for HEV/EV applications’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 28722880.
    25. 25)
      • 24. Loge, H., Angerpointer, L.: ‘The best way how to use resolvers’. Proc. 1st Int. Electric Drives Production Conf. (EDPC), Nuremberg, 2011, pp. 208213.
    26. 26)
      • 6. Zhang, Z., Ni, F., Dong, Y., et al: ‘A novel absolute magnetic rotary sensor’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 44084419.
    27. 27)
      • 18. Nasiri-Gheidari, Z., Tootoonchian, F., Zare, F.: ‘Design oriented technique for mitigating position error due to shaft run-out in sinusoidal-rotor variable reluctance resolvers’, IET Electr. Power Appl., 2017, 11, (1), pp. 132141, doi: 10.1049/iet-epa.2016.0316.
    28. 28)
      • 27. Masaki, K., Kitazawa, K., Mimura, H., et al: ‘Magnetic field analysis of a resolver with a skewed and eccentric rotor’, Trans. Sens. Actuators, 2000, 81, (1–3), pp. 297300.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0777
Loading

Related content

content/journals/10.1049/iet-epa.2017.0777
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading