http://iet.metastore.ingenta.com
1887

Numerical investigation of the effects of magnetic field and fluid electrical conductivity on the performance of marine magnetohydrodynamic motors

Numerical investigation of the effects of magnetic field and fluid electrical conductivity on the performance of marine magnetohydrodynamic motors

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A magnetohydrodynamic (MHD) thruster is a type of electric motors which does not have mechanical moving parts and directly converts electrical energy into mechanical energy. In this study, the effect of magnetic field intensity and seawater electrical conductivity on the performance of a marine MHD thruster model is investigated using fully three-dimensional numerical simulations. For the first time, all electric, magnetic and fluid flow fields are considered in three dimensions. The effects of seawater electrolysis and end loss are taken into account in all simulations and a simple analytical model is developed to verify the numerical results. It is shown that increasing the magnetic field intensity or the electrical conductivity of the working fluid decreases the electrochemical and ohmic losses of the thruster at a specific velocity. Therefore, a higher efficiency can be achieved at higher magnetic field strengths and higher seawater electrical conductivities. Also, it is revealed the end loss of the channel increases with an increase in the electrical conductivity of the working fluid and decreases with an increase in the magnetic field intensity.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0765
Loading

Related content

content/journals/10.1049/iet-epa.2017.0765
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address