http://iet.metastore.ingenta.com
1887

Electromechanical interactions in a doubly fed induction generator drivetrain

Electromechanical interactions in a doubly fed induction generator drivetrain

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Normally, electrical and mechanical systems are designed and analysed in separate domains but, in this study, interactions between electric and mechanical elements are analysed looking for improvement in the performance of electromechanical drivetrains. The work considers a doubly fed induction generator, evaluated with a frequency analysis of the full electromechanical drivetrain developed and applied to identify how tuning gains and system parameters affect the electromechanical interactions. Analytical transfer functions are presented and validated by simulation and test results.

References

    1. 1)
      • 1. Wachel, J.C.: ‘Analysis of torsional vibrations in rotating machinery’. Proc. Twenty-Second Turbomachinery Symp., San Antonio, Texas, USA, 1993.
    2. 2)
      • 2. Ran, L., Xiang, D., Kirtley, J.L.: ‘Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine’, IEEE Trans. Ind. Appl., 2011, 47, pp. 14981506.
    3. 3)
      • 3. Wheeler, P., Bozhko, S.: ‘The more electric aircraft: technology and challenges’, IEEE Electrif. Mag., 2014, 2, pp. 612.
    4. 4)
      • 4. Sarlioglu, B., Morris, C.T.: ‘More electric aircraft: review, challenges, and opportunities for commercial transport aircraft’, IEEE Trans. Transport. Electrif., 2015, 1, pp. 5464.
    5. 5)
      • 5. Mei, F., Pal, B.: ‘Modal analysis of grid-connected doubly fed induction generators’, IEEE Trans. Energy Convers., 2007, 22, pp. 728736.
    6. 6)
      • 6. Lopes, L.A., Lhuilier, J., Khokar, M.F., et al: ‘A wind turbine emulator that represents the dynamics of the wind turbine rotor and drive train’. 2005 IEEE 36th Power Electronics Specialists Conf., Recife, Brazil, 2005, pp. 20922097.
    7. 7)
      • 7. Singh, M., Muljadi, E., Jonkman, J.: ‘Hybrid electro-mechanical simulation tool for wind turbine generators’. 2013 IEEE Green Technologies Conf., Denver, CO, USA, 2013, pp. 266270.
    8. 8)
      • 8. Cardenas, R., Pena, R., Alepuz, S., et al: ‘Overview of control systems for the operation of DFIGs in wind energy applications’, IEEE Trans. Ind. Electron., 2013, 60, pp. 27762798.
    9. 9)
      • 9. Pena, R., Clare, J.C., Asher, G.M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc. Electr. Power Appl., 1996, 143, pp. 231241.
    10. 10)
      • 10. Pena, R., Clare, J.C., Asher, G.M.: ‘A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine’, IEE Proc. Electr. Power Appl., 1996, 143, pp. 380387.
    11. 11)
      • 11. Carrasco, G., Silva, C.A., Peña, R., et al: ‘Control of a four-leg converter for the operation of a DFIG feeding stand-alone unbalanced loads’, IEEE Trans. Ind. Electron., 2015, 62, pp. 46304640.
    12. 12)
      • 12. Feehally, T., Apsley, J.M.: ‘The doubly fed induction machine as an aero generator’, IEEE Trans. Ind. Appl., 2015, 51, pp. 34623471.
    13. 13)
      • 13. Geng, H., Liu, C., Yang, G.: ‘LVRT capability of DFIG-based WECS under asymmetrical grid fault condition’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24952509.
    14. 14)
      • 14. Nian, H., Wang, T., Zhu, Z.Q.: ‘Voltage imbalance compensation for doubly fed induction generator using direct resonant feedback regulator’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 614626.
    15. 15)
      • 15. Xu, H., Hu, J., He, Y.: ‘Operation of wind-turbine-driven DFIG systems under distorted grid voltage conditions: analysis and experimental validations’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23542366.
    16. 16)
      • 16. Ahumada, C., Garvey, S., Yang, T., et al: ‘The importance of load pulse timing in aircraft generation’. 18th Int. Conf. Electrical Machines and Systems, Pattaya City, Thailand, 2015.
    17. 17)
      • 17. Breslan, D.J., Apsley, J.M., Smith, A.C., et al: ‘Control of a vertical axis wind turbine in gusty conditions’. 8th IET Int. Conf. Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 2016, pp. 16.
    18. 18)
      • 18. Prajapat, G.P., Senroy, N., Kar, I.N.: ‘Wind turbine structural modeling consideration for dynamic studies of DFIG based system’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 14631472.
    19. 19)
      • 19. Valenzuela, M.A., Bentley, J.M., Villablanca, A., et al: ‘Dynamic compensation of torsional oscillation in paper machine sections’, IEEE Trans. Ind. Appl., 2005, 41, pp. 14581466.
    20. 20)
      • 20. Feehally, T., Erazo-Damián, I., Apsley, J.M.: ‘Analysis of electromechanical interaction in aircraft generator systems’, IEEE Trans. Ind. Appl., 2016, 52, pp. 43274336.
    21. 21)
      • 21. Feehally, T.: ‘Electro-mechanical interaction in gas turbine-generator systems for more-electric aircraft’. PhD thesis, School of Electrical and Electronic Engineering, University of Manchester, Manchester, 2012.
    22. 22)
      • 22. Krause, P.C., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’ (IEEE press, NJ, 2002), pp. 150151.
    23. 23)
      • 23. Cheng, S., Huang, Y.-Y., Chou, H.-H., et al: ‘PDFF and H∞ controller design for PMSM drive’, in Sobh, T., Elleithy, K., Mahmood, A., Karim, M.A. (Eds.): ‘Novel algorithms and techniques in telecommunications automation and industrial electronics’ (Springer Netherlands, Dordrecht, 2008), pp. 237241.
    24. 24)
      • 24. Ohm, D.Y.: ‘Analysis of PID and PDF compensators for motion control systems’. IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, vol. 3, 1994, pp. 19231929.
    25. 25)
      • 25. Zigmund, B., Terlizzi, A.A., d, X., et al: ‘Experimental evaluation of PI tuning techniques for field oriented control of permanent magnet synchronous motors’, Adv. Electr. Electron. Eng., 2011, 5, pp. 114119.
    26. 26)
      • 26. Djurovic, S., Williamson, S.: ‘Losses and pulsating torques in DFIGs with unbalanced stator and rotor excitation’. 2008 IEEE Int. Conf. Sustainable Energy Technologies, Singapore, 2008, pp. 328333.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0755
Loading

Related content

content/journals/10.1049/iet-epa.2017.0755
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address