access icon free Three-phase current injection method for mitigating turn-to-turn short-circuit fault in concentrated-winding permanent magnet aircraft starter generator

Fractional-slot concentrated-winding (FSCW) permanent magnet synchronous machines, which are characterised with high power density, fault tolerance and wide constant-power speed range, are gaining more and more attention in the aircraft starter generator (SG) systems. Nevertheless, the short-circuit (SC) fault, especially the turn-to-turn SC fault, is the obstruct crux in aviation applications. This study is aimed to demonstrate the feasibility of FSCW permanent magnet SG (PMSG) in dealing with turn-to-turn SC fault. The law of FSCW-PMSG SC fault is analysed and verified by finite-element analysis (FEA), including the influence on turn-to-turn SC current by the number of the shorted turns and the coil position in the slot. The three-phase current injection control is employed to mitigate the SC fault in PMSG when a turn-to-turn SC fault occurs. A 24-slot, 16-pole FSCW-PMSG with spoke-type rotor topology is designed to confirm the ability of inhibiting turn-to-turn SC current without the risk of irreversible demagnetisation. Both FEA and experimental results are presented, verifying the effectiveness of the three-phase current injection control in restraining the turn-to-turn SC current for FSCW PMSG in an acceptable range.

Inspec keywords: synchronous generators; electric current control; starting; aircraft power systems; finite element analysis; permanent magnet generators; rotors

Other keywords: power density; coil position; aircraft SG systems; SC fault mitigation; FSCW permanent magnet synchronous machines; finite-element analysis; three-phase current injection control; shorted turns; FSCW-PMSG SC fault; FEA; constant-power speed range; short-circuit fault; turn-to-turn short-circuit fault mitigation; three-phase current injection method; fault tolerance; turn-to-turn SC current; fractional-slot concentrated-winding permanent magnet synchronous machines; concentrated-winding permanent magnet aircraft starter generator; turn-to-turn SC fault; spoke-type rotor topology

Subjects: Finite element analysis; Synchronous machines; Finite element analysis; Control of electric power systems; Current control; Aerospace power systems

References

    1. 1)
      • 12. Saavedra, H., Urresty, J.C., Riba, J.R., et al: ‘Detection of interturn faults in PMSMs with different winding configurations’, Energy Convers. Manage., 2014, 79, (2), pp. 534542.
    2. 2)
      • 26. Cintron-Rivera, J.G., Foste, S.N., Strangas, E.G.J.G.: ‘Mitigation of turn-to-turn faults in fault tolerant permanent magnet synchronous motors’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 465475.
    3. 3)
      • 28. Gu, B.G., Choi, J.H., Jung, I.S.: ‘Development and analysis of interturn short fault model of pmsms with series and parallel winding connections’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20162026.
    4. 4)
      • 24. Mitcham, A.J., Antonopoulos, G., Cullen, J.J.A.: ‘Implications of shorted turn faults in bar wound PM machines’, IEE Proc. Electr. Power Appl., 2004, 151, (6), pp. 651657.
    5. 5)
      • 4. El-Refaie, A.M.: ‘Fault-tolerant permanent magnet machines: a review’, IET Electr. Power Appl., 2011, 5, (1), pp. 5974.
    6. 6)
      • 22. Welchko, B., Jahns, T.M., Soong, W.L., et al: ‘IPM synchronous machine drive response to symmetrical and asymmetrical short circuit faults’, IEEE Trans. Energy Convers., 2003, 18, (2), pp. 291298.
    7. 7)
      • 15. Barater, D., Buticchi, G., Gerada, C., et al: ‘Diagnosis of incipient faults in PMSMs with coaxially insulated windings’. Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc., 2013, pp. 27562761.
    8. 8)
      • 3. Zhou, L., Wu, Y., Geng, W., et al: ‘Comparative study on concentrated-windings permanent magnet synchronous machines with different rotor structures for aircraft generator application’. Proc. 2015 Int. Conf. Electrical Machines and Systems, Pattaya, 2015, pp. 12461251.
    9. 9)
      • 25. Welchko, B.A., Wai, J., Jahns, T.M., et al: ‘Magnet flux nulling control of interior PM machine drives for improved steady-state response to short-circuit faults’, IEEE Trans. Ind. Appl., 2006, 42, (1), pp. 113120.
    10. 10)
      • 16. Arellano-Padilla, J., Sumner, M., Gerada, C.: ‘Winding condition monitoring schemefor a permanent magnet machine using highfrequency injection’, IET Electr. Power Appl., 2011, 5, (1), pp. 8999.
    11. 11)
      • 1. Cao, W., Mecrow, B.C., Atkinson, G.J., et al: ‘Overview of electric motor technologies used for more electric aircraft (MEA)’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 35233531.
    12. 12)
      • 5. El-Refaie, A.M.: ‘Fractional-Slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 107121.
    13. 13)
      • 19. Arumugam, P., Hamiti, T., Gerada, C.: ‘Turn–turn short circuit fault management in permanent magnet machines’, IET Electr. Power Appl., 2015, 9, (9), pp. 634641.
    14. 14)
      • 8. Kim, K.H., Choi, D.U., Gu, B.G., et al: ‘Fault model and performance evaluation of an inverter-fed permanent magnet synchronous motor under winding shorted turn and inverter switch open’, IET Electr. Power Appl., 2015, 4, (4), pp. 214225.
    15. 15)
      • 7. Sarikhani, A., Mohammed, O.A.: ‘Inter-turn fault detection in pm synchronous machines by physics-based back electromotive force estimation’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 34723484.
    16. 16)
      • 29. Arumugam, P., Hamiti, T., Gerada, C.: ‘Modeling of different winding configurations for fault-tolerant permanent magnet machines to restrain interturn short-circuit current’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 351361.
    17. 17)
      • 23. El-Refaie, A.M., Shah, M.R., Huh, K.K.: ‘High-power-density fault-tolerant pm generator for safety-critical applications’, IEEE Trans. Ind. Appl., 2014, 50, (3), pp. 17171728.
    18. 18)
      • 20. Bai, H., Zhu, J., Qin, J., et al: ‘Fault-tolerant control for a dual-winding fault-tolerant permanent magnet motor drive based on SVPWM’, IET Power Electron., 2017, 10, (5), pp. 509516.
    19. 19)
      • 9. Cheng, S., Zhang, P., Habetler, T.G.: ‘An impedance identification approach to sensitive detection and location of stator turn-to-turn faults in a closed-loop multiple-motor drive’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 15451554.
    20. 20)
      • 11. Urresty, J.C., Riba, J.R., Romeral, L.: ‘Application of the zero-sequence voltage component to detect stator winding inter-turn faults in PMSMs’, Electr. Power Syst. Res., 2012, 89, (4), pp. 3844.
    21. 21)
      • 27. Wu, F., Zheng, P., Jahns, T.M.: ‘Analytical modeling of inter-turn short circuit for multiphase fault-tolerant pm machines with fractional-slot concentrated windings’. Proc. Conversion Congress and Exposition, September 2015, pp. 69706977.
    22. 22)
      • 6. Prieto, B., MartíNez-Iturralde, M., FontáN, L., et al: ‘Fault-tolerant permanent magnet synchronous machine – phase, pole and slot number selection criterion based on inductance calculation’, IET Electr. Power Appl., 2015, 9, (2), pp. 138149.
    23. 23)
      • 14. Faiz, J., Nejadi-Koti, H., Valipour, Z.: ‘Comprehensive review on inter-turn fault indexes in permanent magnet motors’, IET Electr. Power Appl., 2017, 11, (1), pp. 142156.
    24. 24)
      • 17. Yang, S.C.: ‘Online turn fault detection of interior permanent-magnet machines using the pulsating-type voltage injection’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 23402349.
    25. 25)
      • 18. Mecrow, B.C., Jack, A.G., Haylock, J.A., et al: ‘Fault-tolerant permanent magnet machine drives’, IEE Proc. Electr. Power Appl., 1996, 143, (6), pp. 437442.
    26. 26)
      • 21. Barcaro, M., Bianchi, N., Magnussen, F.: ‘Faulty operations of a PM fractional-slot machine with a dual three-phase winding’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 38253832.
    27. 27)
      • 10. Awadallah, M.A., Morcos, M.M., Gopalakrishnan, S., et al: ‘A neuro-fuzzy approach to automatic diagnosis and location of stator inter-turn faults inCSI-fed PM brushless dc motors’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 253259.
    28. 28)
      • 13. Urresty, J.C., Riba, J.R., Romeral, L.: ‘Diagnosis of inter turn faults in PMSMs operating under non-stationary conditions by applying order tracking filtering’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 507515.
    29. 29)
      • 30. Mohammed, O.A., Liu, Z., Liu, S., et al: ‘Internal short circuit fault diagnosis for pm machines using fe-based phase variable model and wavelets analysis’, IEEE Trans. Magn., 2007, 43, (4), pp. 17291732.
    30. 30)
      • 31. Huang, J., Jiang, W., Jiang, Y., et al: ‘Research on modeling methods of permanent magnet machine winding faults’. Proc. 2017 Int. Conf. Electrical Machines and Systems, 2017, pp. 16.
    31. 31)
      • 2. Zhang, Z., Huang, J., Jiang, Y., et al: ‘Overview and analysis of PM starter/generator for aircraft electrical power systems’, CES TEMS, 2017, 1, (2), pp. 117131.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0754
Loading

Related content

content/journals/10.1049/iet-epa.2017.0754
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading