access icon free Various skewing arrangements and relative position of dual rotor of an axial flux induction motor, modelling and performance evaluation

Using a dual air-gap structure in a disc-type motor is an effective solution to eliminate undesirable axial force between stator and rotor, by which higher power density can be achieved, too. Furthermore, some of the performance characteristics such as pulsating torque may be improved greatly by adjusting the existing extra selective design parameters in a dual air-gap motor. Accordingly, in this study, a widespread design consideration is carried out on rotor skewing arrangements of a dual rotor (DR) axial flux induction motor with the aim of pulsating torque reduction. The studied scenarios include when the slots of both rotors are skewed exactly similar with different skew angles, the slots of both rotors are skewed similarly but in the opposite directions and the slots of both rotors are not skewed but one rotor is mounted on the shaft by some shift angle relative to the other. The last one is introduced as an alternative to skewed rotors, which is easily executable in small and large size motors with DR topology. Moreover, an algorithm is proposed to determine the appropriate shift angle. Three-dimensional time stepping finite element analysis is employed in all cases for verification.

Inspec keywords: performance evaluation; finite element analysis; stators; air gaps; torque; rotors; induction motors

Other keywords: dual air-gap structure; three-dimensional time stepping finite element analysis; disc-type motor; higher-power density; various skewing arrangements; stator; dual rotor axial flux induction motor; performance evaluation; dual air-gap motor; pulsating torque reduction; DR discs

Subjects: Asynchronous machines; Finite element analysis

References

    1. 1)
      • 23. Haisen, Z., Jian, Z., Xiangyu, W., et al: ‘A design method for cage induction motors with non-skewed rotor bars’, IEEE Trans. Magn., 2014, 50, pp. 769772.
    2. 2)
      • 1. Gieras, J.F., Wang, R.J., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines2nd ed., (Springer Science & Business Media, New York, 2008).
    3. 3)
      • 4. Nasiri-Gheidari, Z., Lesani, H.: ‘Investigation of characteristics of a single-phase axial flux induction motor using three-dimensional finite element method and d–q model’, IET Electr. Power Appl., 2013, 7, pp. 4757.
    4. 4)
      • 18. Nasiri-Gheidari, Z., Lesani, H.: ‘Theoretical modeling of axial flux squirrel cage induction motor considering both saturation and anisotropy’, Int. Trans. Electr. Energy Syst., 2014, 24, pp. 335346.
    5. 5)
      • 2. Kubzdela, S., Weglinski, B.: ‘Magnetodielectrics in induction motors with disk rotor’, IEEE Trans. Magn., 1988, 24, pp. 635638.
    6. 6)
      • 12. Esposito, N., Musolino, A., Tellini, B.: ‘Electromagnetic analysis of an induction motor with massive disk’, IEEE Trans. Magn., 1995, 31, pp. 20762079.
    7. 7)
      • 10. González-Parada, A., Espinosa-Loza, F., Castaneda-Miranda, A., et al: ‘Application of HTS BSCCO tapes in an ironless axial flux superconductor motor’, IEEE Trans. Appl. Supercond., 2012, 22, p. 5201004.
    8. 8)
      • 19. McClay, C.I., Williamson, S.: ‘The variation of cage motor losses with skew’, IEEE Trans. Ind. Appl., 2000, 36, pp. 15631570.
    9. 9)
      • 7. Benoudjit, A.G., Nait SaÏd, N.: ‘Axial flux induction motor for on-wheel drive propulsion system’, Electr. Mach. Power Syst. Taylor & Francis, 2000, 28, pp. 11071125.
    10. 10)
      • 6. Chan, C.: ‘Axial-field electrical machines-design and applications’, IEEE Trans. Energy Convers., 1987, EC-2, (2), pp. 294300.
    11. 11)
      • 25. Nobahari, A., Darabi, A., Hassannia, A.: ‘Axial flux induction motor, design and evaluation of steady state modeling using equivalent circuit’. Eighth Power Electronics, Drive Systems & Technologies Conf. (PEDSTC), February 2017, pp. 353358.
    12. 12)
      • 9. Valtonen, M.: ‘Performance characteristics of an axial-flux solid-rotor-core induction motor’. PhD thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2007.
    13. 13)
      • 27. Belahcen, A., Arkkio, A.: ‘Comprehensive dynamic loss model of electrical steel applied to FE simulation of electrical machines’, IEEE Trans. Magn., 2014, 44, pp. 886889.
    14. 14)
      • 20. Kawase, Y., Yamaguchi, T., Tu, Z., et al: ‘Effects of skew angle of rotor in squirrel-cage induction motor on torque and loss characteristics’, IEEE Trans. Magn., 2009, 45, pp. 17001703.
    15. 15)
      • 8. Álvarez, A., Suárez, P., Cáceres, D., et al: ‘Disk-shaped superconducting rotor for an axial flux induction motor’, Phys. C, Supercond., 2003, 398, pp. 157160.
    16. 16)
      • 11. Nasiri-Gheidari, Z., Lesani, H.: ‘New design solution for static eccentricity in single stator–single rotor axial flux induction motors’, IET Electr. Power Appl., 2013, 7, pp. 523534.
    17. 17)
      • 21. Wang, L., Bao, X., Di, C., et al: ‘Effects of novel skewed rotor in squirrel-cage induction motor on electromagnetic force’, IEEE Trans. Magn., 2015, 51, pp. 14.
    18. 18)
      • 14. Mirzaei, M., Mirsalim, M., Abdollahi, S. E.: ‘Analytical modeling of axial air gap solid rotor induction machines using a quasi-three-dimensional method’, IEEE Trans. Magn., 2007, 43, pp. 32373242.
    19. 19)
      • 22. Wang, L., Bao, X., Di, C., et al: ‘Influence on vibration and noise of squirrel-cage induction machine with double skewed rotor for different slot combinations’, IEEE Trans. Magn., 2016, 52, pp. 14.
    20. 20)
      • 24. Williamson, S., Smith, S.: ‘Pulsating torque and losses in multiphase induction machines’, IEEE Trans. Ind. Appl., 2003, 39, pp. 986993.
    21. 21)
      • 13. Álvarez, A., Suárez, P., Cáceres, D., et al: ‘Disk-shaped superconducting rotor under a rotating magnetic field: speed dependence’, IEEE Trans. Appl. Supercond., 2005, 15, pp. 21742177.
    22. 22)
      • 26. Guo, Y., Zhu, J.: ‘Improved methods for force and torque calculation in electrical machines by 3D finite element analysis’. Proc. Int. Conf. Electrical Machines and Systems, 2001, pp. 11911194.
    23. 23)
      • 5. Varga, J.: ‘Magnetic and dimensional properties of axial induction motors’, IEEE Trans. Energy Convers., 1986, EC-1, (2), pp. 137144.
    24. 24)
      • 15. Valtonen, M., Parviainen, A., PyrhOnen, J.: ‘Electromagnetic field analysis of 3D structure of axial-flux solid-rotor induction motor’. Proc. SPEEDAM, 2006, pp. 174178.
    25. 25)
      • 17. Smith, B., Platt, D.: ‘Compound, series, axial flux induction machines: single phase analogy’. IEE Proc., 1990, pp. 265272.
    26. 26)
      • 3. Nasiri-Gheidari, Z., Lesani, H.: ‘Optimal design of adjustable air-gap, two-speed, capacitor-run, single-phase axial flux induction motors’, IEEE Trans. Energy Convers., 2013, 28, pp. 543552.
    27. 27)
      • 16. Valtonen, M., Parviainen, A., PyrhOnen, J.: ‘Influence of the air-gap length to the performance of an axial-flux induction motor’. Proc. Int. Conf. Electrical Machines, 2008, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0716
Loading

Related content

content/journals/10.1049/iet-epa.2017.0716
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading