http://iet.metastore.ingenta.com
1887

Rotor strength analysis for high-speed segmented surface-mounted permanent magnet synchronous machines

Rotor strength analysis for high-speed segmented surface-mounted permanent magnet synchronous machines

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the unified analytical solution of rotor strength for the segmented permanent magnet (PM) rotor retained by the carbon-fibre sleeve and non-magnetic alloy sleeve in high-speed surface-mounted permanent magnet synchronous machine. Considering the influence of different densities and coefficients of thermal expansion of PMs and pole fillers on rotor stress, the analytical solution for rotor strength was proposed based on displacement method and stress potential method in polar coordinate. The proposed analytical solution was validated by the finite-element method (FEM) and experiment, respectively, and the influences of rotational speed, retaining sleeve thickness and interference fit between the retaining sleeve and PMs on rotor strength were further investigated based on the analytical solution proposed. It is shown that the results calculated by the proposed analytical solution and the FEM are in good agreement with each other, and the analytical solution can accurately predict the stress distributions of the segmented PM rotor retained by the carbon-fibre sleeve and non-magnetic alloy sleeve. The difference in density and coefficient of thermal expansion between PM and pole filler, rotational speed and operating temperature have great effects on rotor strength.

References

    1. 1)
      • 1. Bianchi, N., Bolognani, S., Luise, F.: ‘Potentials and limits of high speed PM motor’, IEEE Trans. Ind. Appl., 2004, 40, (6), pp. 15701578.
    2. 2)
      • 2. Gerada, D., Mebarki, A., Brown, N.: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    3. 3)
      • 3. Liu, K., Feng, J., Guo, S., et al: ‘Improved position offset based parameter determination of permanent magnet synchronous machines under different load conditions’, IET Electr. Power Appl., 2017, 11, (4), pp. 603612.
    4. 4)
      • 4. Dong, J., Huang, Y., Jin, L., et al: ‘Review on high speed permanent magnet machines including design and analysis technologies’, Proc. CSEE, 2014, 34, (27), pp. 46404653.
    5. 5)
      • 5. Bernard, N., Missoum, R., Dang, L., et al: ‘Design methodology for high-speed permanent magnet synchronous machines’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 477485.
    6. 6)
      • 6. Kolondzovski, Z., Arkkio, A., Larjola, J., et al: ‘Power limits of high-speed permanent-magnet electrical machines for compressor applications’, IEEE Trans. Energy Convers., 2011, 26, (1), pp. 7382.
    7. 7)
      • 7. Kolondzovski, Z., Belahcen, A., Arkkio, A.: ‘comparative thermal analysis of different rotor types for a high-speed permanent-magnet electrical machine’, IET Electr. Power Appl., 2009, 3, (4), pp. 279288.
    8. 8)
      • 8. Cho, H., Jang, S., Choi, S.: ‘A design approach to reduce rotor losses in high-speed permanent magnet machine for turbo-compressor’, IEEE Trans. Magn., 2006, 42, (10), pp. 35213523.
    9. 9)
      • 9. Fang, H., Qu, R., Li, J., et al: ‘Rotor design for high-speed high-power permanent-magnet synchronous machines’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 34113419.
    10. 10)
      • 10. Hong, D., Woo, B., Koo, D.: ‘Rotor dynamics of 120,000 r/min 15 kW ultra high speed motor’, IEEE Trans. Magn., 2009, 45, (6), pp. 28312834.
    11. 11)
      • 11. Bailey, C., Saban, D., Paulo, G.: ‘Design of high-speed direct-connected permanent-magnet motors and generators for the petrochemical industry’, IEEE Trans. Ind. Appl., 2009, 45, (3), pp. 11591165.
    12. 12)
      • 12. Soong, W., Kliman, G., Johnson, R., et al: ‘Novel high-speed induction motor for a commercial centrifugal compressor’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 706713.
    13. 13)
      • 13. Zhang, F., Du, G., Wang, T., et al: ‘Rotor retaining sleeve design for a 1.12-MW high-speed PM machine’, IEEE Trans. Ind. Appl., 2015, 51, (5), pp. 36753685.
    14. 14)
      • 14. Arumugam, P., Xu, Z., Vakil, G., et al: ‘High-speed solid rotor permanent magnet machines: concept and design’, IEEE Trans. Transp. Electrif., 2016, 2, (3), pp. 391400.
    15. 15)
      • 15. Huang, Z., Fang, J.: ‘Multiphysics design and optimization of high-speed permanent-magnet electrical machines for air blower applications’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 27662774.
    16. 16)
      • 16. Borisavljevic, A., Polinder, H., Ferreira, J.: ‘On the speed limits of permanent-magnet machines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 220226.
    17. 17)
      • 17. Chen, L., Zhu, C.: ‘Rotor strength analysis for high speed permanent magnet machines’. Proc. Int. Conf. Electrical Machines and Systems (ICEMS), Hangzhou, China, October 2014, pp. 6569.
    18. 18)
      • 18. Wang, J., Wang, F., Bao, W., et al: ‘Rotor design and strength analysis of high speed permanent magnet machine’, Proc. CSEE, 2005, 25, (15), pp. 140145.
    19. 19)
      • 19. Zhang, C., Zhu, J., Han, X.: ‘Rotor strength analysis of high-speed surface mounted permanent magnet motors’, Proc. CSEE, 2016, 36, (17), pp. 47194728.
    20. 20)
      • 20. Cheng, W., Geng, H., Feng, S., et al: ‘Rotor strength analysis of high-speed permanent magnet synchronous motors’, Proc. CSEE, 2012, 32, (27), pp. 8794.
    21. 21)
      • 21. Chen, L., Zhu, C., Jiang, K.: ‘Rotor strength analysis for high-speed surface-mounted permanent magnet synchronous motor with filled blocks between magnetic Poles’, J. Zhejiang Univ., Eng. Sci., 2015, 49, (9), pp. 17381747.
    22. 22)
      • 22. Binder, A., Schneider, T., Klohr, M.: ‘Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 10211037.
    23. 23)
      • 23. Chen, L., Zhu, C., Wang, M.: ‘Strength analysis for thermal carbon-fiber retaining rotor in high-speed permanent magnet machine’, J. Zhejiang Univ., Eng. Sci., 2015, 49, (1), pp. 162172.
    24. 24)
      • 24. Borisavljevic, A., Polinder, H., Ferreira, J.: ‘Enclosure design for a high-speed permanent magnet rotor’. Proc. 5th IET Int. Conf. Power Electronics, Machines and Drives (PEMD), Brighton, UK, April 2010, pp. 16.
    25. 25)
      • 25. Liu, W., Chen, J., Zhang, C., et al: ‘Strength analysis of high speed permanent magnet machine rotor with inter-shaft filling’, Trans. China Electrotechnical Soc., 2018, 33, (5), pp. 10241031.
    26. 26)
      • 26. Zhang, F., Du, G., Wang, T., et al: ‘Rotor strength analysis of high-speed permanent magnet under different protection measures’, Proc. CSEE, 2013, 33, (Suppl.), pp. 195202.
    27. 27)
      • 27. Calme, O., Bigaud, D., Jones, S., et al: ‘Analytical evaluation of stress state in braided orthotropic composite cylinders under lateral compression’, Compos. Sci. Technol., 2006, 66, (15), pp. 30403052.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0686
Loading

Related content

content/journals/10.1049/iet-epa.2017.0686
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address