Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electrification of a landing gear – actuators with toothed coupling

This study presents the design of an electric motorisation for a landing gear. The concept of More Electric Aircraft is currently with one of the major concerns of all aircraft manufacturers and equipment suppliers throughout the world. The objective consists of eliminating, to the greatest extent possible, the use of any actuator containing fluid pressure and increasing the use of electric actuators. This applies to all airplane orders and accessories. The choice of this motorisation was to design synchronous machines with toothed coupling. When actuators of very high mass performance are required, the use of this type of actuator is an interesting solution, compared with conventional actuators with polar coupling. The principles used in our design method are based on two-dimensional finite-element simulations. The study and the calculation can be performed in two dimensions from a simple element called an elementary pattern, representing the interaction of magnets with stator teeth. Following a summary presentation of this type of actuator and its dimensioning, two prototypes are presented. To replace the hydraulic cylinders in the landing gear of an A320 aircraft, a vernier machine, and a multi-air gap linear motor has been dimensioned, manufactured and tested.

References

    1. 1)
      • 7. Toba, A., Lipo, T.A.: ‘Generic torque-maximizing design methodology of surface permanent-magnet vernier machine’, IEEE Trans. Ind. Appl., 2000, 36, pp. 15391545.
    2. 2)
      • 6. Ziegler, N.: ‘Actionneur électromagnétique linéaire polyentrefer à aimants à hautes performances. Application aux entrainements directs pour le domaine aéronautique’. PhD thesis, University Montpellier 2, France, 2008.
    3. 3)
      • 3. Jac, J.: ‘Actionneur électromagnétique à entrainement direct à hautes performances spécifiques. Application au domaine aéronautique’. PhD thesis, University Montpellier 2, France, 2008.
    4. 4)
      • 15. Matt, D., Enrici, P., Dumas, F., et al: ‘Optimization of the association of electric generator and static converter for a medium power wind turbine’ in Carriveau, R. (Ed.): ‘Fundamental and advanced topics in wind power’ (IntechOpen, 2011, 1st edn.), pp. 269288.
    5. 5)
      • 10. Cavarec, P.E., Ben Ahmed, H., Multon, B.: ‘Force density improvements from increasing the number of airgap surfaces in synchronous linear actuators’, IEE Proc. – Electr. Power Appl., 2003, 150, (1), pp. 106116.
    6. 6)
      • 16. Dumas, F., Enrici, P., Matt, D.: ‘Design, comparison of two multi-disc permanent magnet-motors for aeronautical applications’. Int. Conf. on Electrical Machines, ICEM'2012, Marseille, France, September 2012.
    7. 7)
      • 11. Ahmed, H.B.: ‘Des procédés de conversion électro-magnéto-mécaniques non-conventionnels aux systèmes mécatroniques: Conception - Modélisation – Optimisation’. Habilitation qualifications, University Paris Sud XI, France, 2006.
    8. 8)
      • 8. Llibre, J.F., Matt, D.: ‘A cylindrical vernier reluctance permanent-magnet machine’, Electromotion J., 1998, 5, (1), pp. 3539.
    9. 9)
      • 19. Enrici, P., Jac, J., Ziegler, N., et al: ‘High torque motor (vernier reluctance magnet machine) for specific systems’. Int. Conf. on Electrical Machines, ICEM'2006, Chania, Crete Island, Greece, September 2006.
    10. 10)
      • 12. Ziegler, N., Matt, D., Jac, J., et al: ‘A multi air-gaps linear actuator design using finite elements methods’. Int. Conf. on Electrical Machines, ICEM'2006, Chania, Crete Island, Greece, September 2006.
    11. 11)
      • 4. Matt, D., Goyet, R., Lucidarme, J., et al: ‘Longitudinal field multi-airgap linear reluctance actuator’, Electr. Mach. Power Syst., 1987, 13, pp. 299313.
    12. 12)
      • 13. Enrici, P., Dumas, F., Ziegler, N., et al: ‘Design of a high-performance, multi-air gap linear actuator for aeronautical applications’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 896905.
    13. 13)
      • 21. Jac, J., Ziegler, N.: ‘Vernier machine with magnets’. French Patent WO 2010/133797 A1, May 2010..
    14. 14)
      • 1. Wheeler, P., Bozhko, S.: ‘The more electric aircraft: technology and challenges’, IEEE Electrif. Mag., 2014, 2, (4), pp. 612.
    15. 15)
      • 9. Matt, D., Enrici, P.: ‘Couplage par effet de denture dans les machines électriques synchrones. Synthèse et comparaison: machine à réluctance variable et machine à aimants’, Rev. Int. Génie Electr., 2005, 8, (3/4), pp. 425451.
    16. 16)
      • 14. Cavarec, P.E., Ahmed, H.B., Multon, B.: ‘New multi-rod linear actuator for direct-drive, wide mechanical bandpass applications’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 9619710.
    17. 17)
      • 17. Enrici, P., Dumas, F., Matt, D.: ‘Impact of the assembly constraints on a multi-air gap linear motor’. Int. Conf. on Electrical Machines, ICEM'2012, Marseille, France, September 2012.
    18. 18)
      • 20. Matt, D., Nierlich, F., Balducci, G., et al: ‘Moteur électrique à fort couple massique pour l'aéronautique’, Rev. Int. Génie Electr., 2007, 10, pp. 403427.
    19. 19)
      • 18. Matt, D., Tounzi, A.M., Zaïm, M.E.: ‘Low-speed Teeth Coupling Machines’ in Rezzoug, A., Zaïm, M.E. (Ed.): ‘Non-conventional electrical machines’ (ISTE Ltd and John Wiley & Sons, Inc, 2012, 1st edn.).
    20. 20)
      • 2. Roboam, X., Sareni, B., De Andrade, A.: ‘More electricity in the air’, IEEE Ind. Electron. Mag., 2012, 6, (4), pp. 617.
    21. 21)
      • 5. Lucidarme, J., Amouri, A., Poloujadoff, M.: ‘Optimum design of longitudinal field variable reluctance motors-application to a high-performance actuator’, IEEE Trans. Energy Convers., 1993, 8, (3), pp. 357361.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0634
Loading

Related content

content/journals/10.1049/iet-epa.2017.0634
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address