Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Influence of direct-connected inverter with one power switch open circuit fault on electromagnetic field and temperature field of permanent magnet synchronous motor

For permanent magnetic motors, the faults in inverter may cause serious mechanical vibration, winding overheating, and thermal demagnetisation for the magnets. Thus, this study addresses the problem of the electromagnetic field and temperature distributions for permanent magnet synchronous motor (PMSM) under open circuit fault (OCF) in the upper switch of one phase. Firstly, taking a 12.5 kW 2000 r/min PMSM as an example, the 2D transient electromagnetic field-circuit coupling calculation model is established. Then the flowing paths of the three-phase currents in inverter are analysed before and after the OCF in the upper switch of one phase. Next, by using the finite-element method, the current harmonics, the electromagnetic torque, the rotating speed, and the losses in PMSM are investigated. Simultaneously, direct current component and torque pulsation are also derived. Based on the 3D temperature field, the temperature distributions in different parts of PMSM also are comparatively studied before and after this fault. Moreover, the temperature of permanent magnets, which is the part most seriously affected by the temperature, are further analysed. Finally, calculation and experimental tests prove the accuracy of the theoretical analysis. The obtained conclusions may provide some references for the limit operation and effective diagnosis for inverter faults.

References

    1. 1)
      • 20. Li, W.L., Qiu, H.B., Yi, R., et al: ‘Three-dimensional electromagnetic field calculation and analysis of axial–radial flux-type high-temperature superconducting synchronous motor’, IEEE Trans. Appl. Superconduct., 2013, 23, (1), pp. 52006075200613.
    2. 2)
      • 14. Masrur, M.A., Chen, Z., Murphey, Y.: ‘Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications’, IET Power Electron., 2010, 3, (2), pp. 279291.
    3. 3)
      • 12. Kim, K.H., Gu, B.G., Jung, I.S.: ‘Online fault-detecting scheme of an inverter-fed permanent magnet synchronous motor under stator winding shorted turn and inverter switch open’, IET Electr. Power Appl., 2011, 5, (6), pp. 529539.
    4. 4)
      • 18. Welchko, B.A., Jahns, T.M., Hiti, S.: ‘IPM synchronous machine drive response to a single-phase open-circuit fault’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 764771.
    5. 5)
      • 22. Li, L.Y., Huang, X.Z., Kou, B.Q., et al: ‘Analysis of 3D transient temperature field for permanent magnet linear synchronous motor with high thrust density’. Conf. Asia-Pacific Power and Energy Engineering, 2009, pp. 14.
    6. 6)
      • 9. Salehifar, M., Arashloo, R.S., Moreno-Eguilaz, M., et al: ‘Observer-based open transistor fault diagnosis and fault tolerant control of five-phase permanent magnet motor drive for application in electric vehicles’, IET Power Electron., 2015, 8, (1), pp. 7687.
    7. 7)
      • 21. Wang, S., Lv, Z.S., Zhao, Y.Y., et al: ‘Temperature field and heatload research for main propellant direct drive permanent magnet motor of unmanned aerial vehicle’. 17th, Int. Conf. Electrical Machines and Systems, 2014, pp. 23602364.
    8. 8)
      • 17. Hemeida, A., Sergeant, P., Vansompel, H.: ‘Comparison of methods for permanent magnet eddy-current loss computations with and without reaction field considerations in axial flux PMSM’, IEEE Trans. Magn., 2015, 51, (9), pp. 111.
    9. 9)
      • 6. Campos-Delgado, D.U., Pecina-Sanchez, J.A., Espinoza-Trejo, D.R., et al: ‘Diagnosis of open-switch faults in variable speed drives by stator current analysis and pattern recognition’, IET Electr. Power Appl., 2013, 7, (6), pp. 509522.
    10. 10)
      • 16. Lancarotte, M.S., Penteado, A.D., Paulos, A.J.: ‘Prediction of magnetic losses under sinusoidal or non-sinusoidal induction by analysis of magnetization rate’, IEEE Trans. Energy Conver., 2001, 16, (2), pp. 174179.
    11. 11)
      • 13. Campos-Delgado, D.U., Espinoza-Trejo, D.R., Palacios, E.: ‘Fault tolerant control in variable speed drives: a survey’, IET Electr. Power Appl., 2008, 2, (2), pp. 121134.
    12. 12)
      • 7. Choi, C., Lee, W.: ‘Design and evaluation of voltage measurement-based sectoral diagnosis method for inverter open switch faults of permanent magnet synchronous motor drives’, IET Electr. Power Appl., 2012, 6, (8), pp. 526532.
    13. 13)
      • 11. Madhukar Rao, A., Sivakumar, K.: ‘A fault-tolerant single-phase five-level inverter for grid-independent PV systems’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 75697577.
    14. 14)
      • 8. Liu, C.H., Chau, K.T., Li, W.L.: ‘Comparison of fault-tolerant operations for permanent-magnet hybrid brushless motor drive’, IEEE Trans. Magn., 2010, 46, (6), pp. 13781381.
    15. 15)
      • 2. Wang, W., Cheng, M., Zhang, B., et al: ‘A fault tolerant permanent magnet traction module for subway application’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 16461658.
    16. 16)
      • 1. Cheng, M., Zhu, Y.: ‘The state of the art of wind energy conversion systems and technologies’, IEEE Trans. Energy Convers., 2014, 88, pp. 332347.
    17. 17)
      • 10. Druant, J., Vyncke, T., Belie, F.D., et al: ‘Adding inverter fault detection to model-based predictive control for flying-capacitor inverters’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 20542063.
    18. 18)
      • 4. Nguyen, N.K., Meinguet, F., Semail, E., et al: ‘Fault-tolerant operation of an open-End winding five-phase PMSM drive with short-circuit inverter fault’, IEEE Trans. Ind. Electrn., 2016, 63, (1), pp. 595605.
    19. 19)
      • 23. Kwon, O.: ‘Analysis and experiment on the thermal characteristics of electric motors’, PhD thesis, University of California, Berkeley, 2001, pp. 3335.
    20. 20)
      • 15. Li, C., Guo, L.L., Zhe, Q., et al: ‘Analysis of eddy current loss on permanent magnets in PMSM with fractional slot’. IEEE Conf. Industrial Electrn. Appl., 2015, pp. 12461250.
    21. 21)
      • 5. Jasim, O., Sumner, M., Gerada, C., et al: ‘Development of a new fault-tolerant induction motor control strategy using an enhanced equivalent circuit model’, IET Electr. Power Appl., 2011, 5, (8), pp. 618627.
    22. 22)
      • 3. Cheng, M., Chan, C.C.: ‘General requirement of traction motordrives’, in Crolla, D., Foster, D.E., Kobayashi, T., Vaughan, N. (Eds.): ‘Encyclopedia of automotive engineering’ (John Wiley & Sons Ltd, Chichester, 2014), pp. 118.
    23. 23)
      • 25. Li, W.L., Cao, J.C., Zhang, X.C.: ‘Electro-thermal analysis of induction motor with compound cage rotor used for PHEV’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 660668.
    24. 24)
      • 19. Huynh, C., Zheng, L.P., Acharya, D.: ‘Losses in high speed permanent magnet machines used in microturbine applications’, IEEE Trans. Gas Turbines Power, 2009, 131, (2), pp. 697703.
    25. 25)
      • 24. Xypteras, J., Hatziathanassiou, V.: ‘Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect’, IEEE Trans. Energy Conver., 1999, 14, (4), pp. 9961003.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0631
Loading

Related content

content/journals/10.1049/iet-epa.2017.0631
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address