Hybrid predictive control strategy for a low-cost converter-fed IM drive

Hybrid predictive control strategy for a low-cost converter-fed IM drive

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The converter consisting of a single-phase half-bridge rectifier and four-switch three-phase inverter is a low-cost power converter with complicated operating constraints. It is difficult to control by the conventional strategies. This study proposes a hybrid predictive control strategy with dual loops for this converter. In the outer loop, a proportional–integral controller is designed to regulate the dc-link voltage, capacitor voltage balancing, and the speed and flux of induction motors (IM). Also, in the inner loop, the finite set model predictive control is employed to control the ac input current and stator currents of the IM. The major advantages of the control strategy include: (i) easy to deal with complicated constraints and manage multiple control targets; (ii) without the need of modulators; (iii) good dynamic response. The simulation and experimental results indicate that the proposed method can guarantee the stable operation and good performance.


    1. 1)
      • 1. Welchko, B.A., Lipo, T.A., Jahns, T.M., et al: ‘Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitation’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 11081116.
    2. 2)
      • 2. Jacobina, C.B., Correa, M.B., de, R.:‘AC/AC converters with a reduced number of switches’. Proc. Int. Conf. Industry Application, Chicago, USA, September 2001, pp. 17551762.
    3. 3)
      • 3. Zhou, D.H., Zhao, J., Liu, Y.: ‘Finite control set model predictive control scheme of three-phase four-leg back-to-back converter-fed induction motor drive’, IET Electr. Power Appl., 2017, 11, (5), pp. 761767.
    4. 4)
      • 4. Jacobina, C.B., de Freitas, I.S., Lima, A.M.N., et al: ‘DC-link three-phase-to-three-phase four-leg converters’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 19531961.
    5. 5)
      • 5. Soeiro, T.B., Kolar, J.W.: ‘Analysis of high-efficiency three-phase two-and three-level unidirectional hybrid rectifiers’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 35893601.
    6. 6)
      • 6. Wei, Z., Chen, J., Chen, X., et al: ‘Modified one-cycle-controlled three-phase pulse-width modulation rectifiers under low-output DC voltage conditions’, IET Power Electron., 2014, 7, (9), pp. 753763.
    7. 7)
      • 7. Wang, B., Venkataramanan, G., Bendre, A.: ‘Unity power factor control for three-phase three-level rectifiers without current sensors’, IEEE Trans. Ind. Appl., 2007, 43, (5), pp. 13411348.
    8. 8)
      • 8. de Rossiter Correa, M.B., Jacobina, C.B., da Silva, E.R.C., et al: ‘A general PWM strategy for four-switch three-phase inverters’, IEEE Trans. Power Electron., 2006, 21, (6), pp. 16181627.
    9. 9)
      • 9. Kazmierkowski, M.P., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703.
    10. 10)
      • 10. Dzung, P.Q., Phuong, L.M., Vinh, P.Q.: ‘New space vector Control approach for four switch three phase inverter (FSTPI)’. Proc. Int. Conf. Power Electronics and Drive Systems, Bangkok, Thailand, November 2007, pp. 10021008.
    11. 11)
      • 11. Blaabjerg, F., Freysson, S., Hansen, H.H., et al: ‘Comparison of a space-vector modulation strategy for a three phase standard and a component minimized voltage source inverter’. Proc. Int. Conf. EPE, Seville, Spain, September 1995, pp. 18061813.
    12. 12)
      • 12. Hwang, S.H., Kim, J.M.: ‘Dead time compensation method for voltage-fed PWM inverter’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 110.
    13. 13)
      • 13. Ahmadi, D., Wang, J.: ‘Selective harmonic elimination for multilevel inverters with unbalanced DC inputs’. Proc. Int. Conf. Vehicle Power and Propulsion, Dearborn, USA, September 2009, pp. 773778.
    14. 14)
      • 14. Blaabjerg, F., Neacsu, D.O., Pedersen, J.K.: ‘Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters’, IEEE Trans. Power Electron., 1999, 14, (1), pp. 743752.
    15. 15)
      • 15. Kim, J., Nam, K.: ‘A current distortion compensation scheme for four-switch inverters’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 10321040.
    16. 16)
      • 16. Lee, D.M., Park, J.B., Toliyat, H.A.: ‘A simple current ripple reduction method for B4 inverters’, J. Elect. Eng. Technol., 2013, 8, pp. 10621069.
    17. 17)
      • 17. Morari, M., Lee, J.H.: ‘Model predictive control: past, present and future’, Comput. Chem. Eng.., 1999, 23, (4), pp. 667682.
    18. 18)
      • 18. Dan, H., Zhu, Q., Peng, T., et al: ‘Preselection algorithm based on predictive control for direct matrix converter’, IET Electr. Power Appl., 2017, 11, (5), pp. 768775.
    19. 19)
      • 19. Cheng, K., Jen, T., Li, C.: ‘Model-free predictive current controller for four-switch three-phase inverter-fed interior permanent magnet synchronous motor drive systems’. Proc. Int. Conf. Advanced Intelligent Mechatronics, Kachsiung, Taiwan, July 2012, pp. 10481053.
    20. 20)
      • 20. Vargas, R., Rodríguez, J., et al: ‘Predictive current control of an induction machine fed by a matrix converter with reactive power control’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43624371.
    21. 21)
      • 21. Formentini, A., Trentin, A., Marchesoni, M., et al: ‘Speed finite control set model predictive control of a PMSM fed by matrix converter’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 67866796.
    22. 22)
      • 22. Montanari, M., Peresada, S., Tilli, A.: ‘A speed-sensorless indirect field-oriented control for induction motors based on high gain speed estimation’, Automatica, 2006, 42, (10), pp. 16371650.
    23. 23)
      • 23. Habibullah, M., Lu, D.C.: ‘Predictive torque and flux control of a four-switch inverter-fed IM drive’. Proc. Int. Conf. Int. Future Energy Electronics, Tainan, Taiwan, November 2013, pp. 629634.
    24. 24)
      • 24. Zhu, C., Zeng, Z.Y., Zhao, R.X.: ‘Comprehensive analysis and reduction of torque ripples in three-phase four-switch inverter-fed PMSM drives using space vector pulse-width modulation’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 54115424.
    25. 25)
      • 25. Cortes, P., Kouro, S., Rocca, B.L., et al: ‘Guidelines for weighting factors design in model predictive control of power converters and drives’. Proc. Int. Conf. IEEE ICIT, Gippsland, VIC, Australia, February 2009, pp. 17.

Related content

This is a required field
Please enter a valid email address