http://iet.metastore.ingenta.com
1887

Fast predictive technique for reverse power detection in synchronous generator

Fast predictive technique for reverse power detection in synchronous generator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reverse power relays are utilised to trip turbine generators to avoid prime mover damage and directional relay is most widely used as the main protection for these conditions. An intentional time delay is ordinarily utilised to overcome the possible maloperation of these relays. However, the intentional time delay to prevent maloperation is not an ideal solution. As this time delay increases the reverse power relay operation time, which means that the motoring action of the synchronous generator persist for a longer time, making the prime mover more vulnerable to active power drawn by the generator. This study proposes a new flux-based approach to detect reverse power condition in the synchronous generators. The proposed scheme uses the analysis of angular velocity and acceleration data that are calculated from the estimated magnetic flux at the machine stator terminals. The basic idea of the technique stems from the principle that the stator and rotor magnetic fluxes rotate together at synchronous speed and will not be affected by system disturbances for a short interval according to highly inductive characteristics of the synchronous machine. The main advantage of this predictive algorithm is its speed, security and sensitivity to detect the reverse power conditions.

References

    1. 1)
      • 1. Hasani, A., Haghjoo, F.: ‘Fast and secure detection technique for loss of field occurrence in synchronous generators’, IET Electr. Power Appl., 2017, 11, (4), pp. 567577.
    2. 2)
      • 2. Kamiev, K., Nerg, J., Pyrhönen, J., et al: ‘Hybrid excitation synchronous generators for island operation’, IET Electr. Power Appl., 2012, 6, (1), pp. 111.
    3. 3)
      • 3. Clark, H.K., Feltes, J.W.: ‘Industrial and cogeneration protection problems requiring simulation’, IEEE Trans. Ind. Appl., 1989, 25, (4), pp. 766775.
    4. 4)
      • 4. Aman, M.M., Jasmon, G.B., Ahmed Khan, Q., et al: ‘Modeling and simulation of reverse power relay for generator protection’. IEEE Int. Power Engineering and Optimization Conf. (PEOCO), Melaka, Malaysia, June 2012, pp. 317322.
    5. 5)
      • 5. IEEE Std. C37.102: ‘IEEE guide for AC generator protection’ (IEEE, New York, 2006).
    6. 6)
      • 6. Jenkins, A.M., Duncan, J., Lynch, C.A.: ‘Impact of steam turbine valve closure on a synchronous machine and its reverse power protection’. Proc. of 12th IET Int. Conf. on Developments in Power System Protection (DPSP), 2014, pp. 16.
    7. 7)
      • 7. Klempner, G., Kerszenbaum, I.: ‘Operation and maintenance of large turbo-generators’ (John Wiley & Sons, New Jersey, 2004).
    8. 8)
      • 8. Henao, H., Demian, C., Capolino, G.-A.: ‘A frequency-domain detection of stator winding faults in induction machines using an external flux sensor’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 12721279.
    9. 9)
      • 9. Bui, V.P., Chadebec, O., Rouve, L.-L., et al: ‘Noninvasive fault monitoring of electrical machines by solving the steady-state magnetic inverse problem’, IEEE Trans. Magn., 2008, 44, (6), pp. 10501053.
    10. 10)
      • 10. Abedini, M., Sanaye-Pasand, M., Davarpanah, M.: ‘Flux linkage estimation based loss of excitation relay for synchronous generator’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 280288.
    11. 11)
      • 11. Abedini, M., Sanaye-Pasand, M., Davarpanah, M.: ‘An analytical approach to detect generator loss of excitation based on internal voltage calculation’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 23292338.
    12. 12)
      • 12. Mostafaei, M., Haghjoo, F.: ‘Flux-based turn-to-turn fault protection for power transformers’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 11541163.
    13. 13)
      • 13. Haghjoo, F., Mostafaei, M.: ‘Flux-based method to diagnose and identify the location of turn-to-turn faults in transformers’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10831091.
    14. 14)
      • 14. Yaghobi, H., Rajabi Mashhadi, H., Ansari, K.: ‘Artificial neural network approach for locating internal faults in salient-pole synchronous generator’, Expert Syst. Appl., 2011, 38, pp. 1332813341.
    15. 15)
      • 15. Yaghobi, H., Ansari, K., Rajabi Mashhadi, H.: ‘Stator turn-to-turn fault detection of synchronous generator using total harmonic distortion analyzing of magnetic flux linkage’, Iran. J. Sci. Technol. Trans. Electr. Eng. (IJSTE), 2013, 37, (E2), pp. 161182.
    16. 16)
      • 16. Yaghobi, H., Ansari, K., Rajabi Mashhadi, H.: ‘Analysis of magnetic flux linkage distribution in salient-pole synchronous generator with different kinds of inter-turn winding faults linkage’, Iran. J. Electr. Electron. Eng. (IJEEE), 2011, 7, (4), pp. 260272.
    17. 17)
      • 17. Yaghobi, H.: ‘Impact of static synchronous compensator on flux-based synchronous generator loss of excitation protection’, IET Gener. Transm. Distrib., 2015, 9, (9), pp. 874883.
    18. 18)
      • 18. Yaghobi, H., Mortazavi, H.: ‘A novel method to prevent incorrect operation of synchronous generator loss of excitation relay during and after different external faults’, Int. Trans. Electr. Energy Syst. (ETEP), 2015, 25, (9), pp. 17171735.
    19. 19)
      • 19. Yaghobi, H., Mortazavi, H., Ansari, K., et al: ‘Study on application of flux linkage of synchronous generator for loss of excitation detection’, Int. Trans. Electr. Energy Syst. (ETEP), 2013, 23, (6), pp. 802817.
    20. 20)
      • 20. Yaghobi, H.: ‘Out-of-step protection of generator using analysis of angular velocity and acceleration data measured from magnetic flux’, Electr. Power Syst. Res., 2016, 132, pp. 921.
    21. 21)
      • 21. Fitzgerald, A.E., Kingsley, C., Umans, S.D.: ‘Electric machinery’ (Mc Graw- Hill, New York, 2003, 6th edn.).
    22. 22)
      • 22. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    23. 23)
      • 23. Mahamedi, B., Zhu, J. G., Hashemi, S.M.: ‘A setting-free approach to detecting loss of excitation in synchronous generators’, IEEE Trans. Power Deliv., 2016, 31, (5), pp. 22702278.
    24. 24)
      • 24. Mahamedi, B., Zhu, J.: ‘A novel approach to detect symmetrical faults occurring during power swings by using frequency components of instantaneous three-phase active power’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 13681375.
    25. 25)
      • 25. Mechraoui, A., Thomas, D.W.P.: ‘A new blocking principle with phase and earth fault detection during fast power swings for distance protection’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 12421248.
    26. 26)
      • 26. Yaghobi, H.: ‘Fast discrimination of stable power swing with synchronous generator loss of excitation’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 16821690.
    27. 27)
      • 27. Annakkage, M.S., Karawita, C., Annakkage, U.D.: ‘Frequency scan-based screening method for device dependent sub-synchronous oscillations’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 18721878.
    28. 28)
      • 28. Yaghobi, H.: ‘A new adaptive impedance-based LOE protection of synchronous generator in the presence of STATCOM’, IEEE Trans. Power Deliv., 2017, 32, (6), pp. 24892499.
    29. 29)
      • 29. Morioka, Y., Tomiyama, K., Arima, H., et al: ‘System separation equipment to minimize power system instability using generator's angular-velocity measurements’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 941947.
    30. 30)
      • 30. Despalatovic, M., Jadric, M., Terzic, B.: ‘Real-time power angle determination of salient-pole synchronous machine based on air gap measurements’, Electr. Power Syst. Res., 2008, 78, pp. 18731880.
    31. 31)
      • 31. Tavner, P.J., Gaydon, B.G., Ward, B.A.: ‘Monitoring generators and large motors’, Proc. of the IEE, 1986, 133, (3), pp. 169180, Pt. B.
    32. 32)
      • 32. Mishra, C., Singh, S.P., Rokadia, J.: ‘Optimal power flow in the presence of wind power using modified cuckoo search’, IET Gener. Transm. Distrib., 2015, 9, (7), pp. 615626.
    33. 33)
      • 33. Paudyal, S., Ramakrishna, G., Sachdev, M.S.: ‘Application of equal area criterion conditions in the time domain for out-of-step protection’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 600609.
    34. 34)
      • 34. Ghorbani, A., Mozafari, B., Soleymani Ranjbar, A.M.: ‘Operation of synchronous generator LOE protection in the presence of shunt-FACTS’, Electr. Power Syst. Res., 2015, 119, pp. 178186.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0491
Loading

Related content

content/journals/10.1049/iet-epa.2017.0491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address