http://iet.metastore.ingenta.com
1887

High power density multiple output permanent magnet alternator

High power density multiple output permanent magnet alternator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The power electronic equipment is very much required when the alternator, capable of providing certain voltage level with a certain frequency, has to supply power to the load that needs voltage level or frequency other than the rated voltage and rated frequency of the alternator. At the same time, the power electronic circuit will also become complex if the alternator is to be provided with multiple outputs of different voltages with different frequencies. Therefore, a hybrid flux permanent magnet alternator (PMA) with multiple outputs is proposed in this study by utilising both radial flux permanent magnet (PM) technology and axial flux PM technology. The utilisation of both radial and axial flux PM technologies in the proposed hybrid flux multiple output PMA increases the power density also compared with that of conventional multiple output PMA. A comparison study is carried out between the conventional PMA and proposed hybrid flux multiple output PMA for the same volume and the same is also validated with finite-element method software and prototype testing.

References

    1. 1)
      • W.U.N. Fernando , C. Gerada .
        1. Fernando, W.U.N., Gerada, C.: ‘High speed permanent-magnet machine design with minimized stack-length under electromagnetic and mechanical constraints’, Int. J. Appl. Electromagn., 2014, 46, (1), pp. 95109.
        . Int. J. Appl. Electromagn. , 1 , 95 - 109
    2. 2)
      • A. Boglietti , C. Gerada , A. Cavagnino .
        2. Boglietti, A., Gerada, C., Cavagnino, A.: ‘High-speed electrical machines and drives’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29432945.
        . IEEE Trans. Ind. Electron. , 6 , 2943 - 2945
    3. 3)
      • J. Boisson , F. Louf , J. Ojeda .
        3. Boisson, J., Louf, F., Ojeda, J., et al: ‘Analytical approach for mechanical resonance frequencies of high-speed machines’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30813088.
        . IEEE Trans. Ind. Electron. , 6 , 3081 - 3088
    4. 4)
      • A. Borisavljevic , H. Polinder , J.A. Ferreira .
        4. Borisavljevic, A., Polinder, H., Ferreira, J.A.: ‘On the speed limits of permanent-magnet machines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 220227.
        . IEEE Trans. Ind. Electron. , 1 , 220 - 227
    5. 5)
      • D. Gerada , A. Mebarki , N.L. Brown .
        5. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘Design aspects of high-speed high-power-density laminated-rotor induction machines’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 40394047.
        . IEEE Trans. Ind. Electron. , 9 , 4039 - 4047
    6. 6)
      • D. Gerada , A. Mebarki , N.L. Brown .
        6. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
        . IEEE Trans. Ind. Electron. , 6 , 2946 - 2959
    7. 7)
      • A. Tenconi , S. Vaschetto , A. Vigliani .
        7. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electrical machines for highspeed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30223029.
        . IEEE Trans. Ind. Electron. , 6 , 3022 - 3029
    8. 8)
      • A. Tuysuz , C. Zwyssig , J.W. Kolar .
        8. Tuysuz, A., Zwyssig, C., Kolar, J.W.: ‘A novel motor topology for high-speed micro-machining applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29602968.
        . IEEE Trans. Ind. Electron. , 6 , 2960 - 2968
    9. 9)
      • N. Uzhegov , E. Kurvinen , J. Nerg .
        9. Uzhegov, N., Kurvinen, E., Nerg, J., et al: ‘Multidisciplinary design process of a 6-slot 2-pole highspeed permanent-magnet synchronous machine’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 784795.
        . IEEE Trans. Ind. Electron. , 2 , 784 - 795
    10. 10)
      • A. Aigbomian , P. Arumugam , T. Hamiti .
        10. Aigbomian, A., Arumugam, P., Hamiti, T., et al: ‘Fast computing tool for performance evaluation in interior permanent-magnet machines’. Proc. Int. Conf. on Electrical Machines, September 2014, pp. 27222727.
        . Proc. Int. Conf. on Electrical Machines , 2722 - 2727
    11. 11)
      • K.T. Chau , Y. Fan , M. Cheng .
        11. Chau, K.T., Fan, Y., Cheng, M.: ‘A novel three-phase doubly salient permanent magnet machine for wind power generation’. Industry Applications Conf., 3–7 October 2004, pp. 366372.
        . Industry Applications Conf. , 366 - 372
    12. 12)
      • M. Cheng , K.T. Chau , C.C. Chan .
        12. Cheng, M., Chau, K.T., Chan, C.C., et al: ‘Control and operation of a new 8/6-pole doubly salient permanent magnet motor drive’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 13631371.
        . IEEE Trans. Ind. Appl. , 5 , 1363 - 1371
    13. 13)
      • M. Cheng , K.T. Chau , C.C. Chan .
        13. Cheng, M., Chau, K.T., Chan, C.C.: ‘Static characteristics of a new doubly salient permanent magnet motor’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 2025.
        . IEEE Trans. Energy Convers. , 1 , 20 - 25
    14. 14)
      • M. Aydin , M.K. Guven .
        14. Aydin, M., Guven, M.K.: ‘Design of several permanent magnet synchronous generators for high power traction applications’. Electrical Machines and Drives Conf. (IEMDC), 12–15 May 2013, pp. 8187.
        . Electrical Machines and Drives Conf. (IEMDC) , 81 - 87
    15. 15)
      • R.L. Ficheux , F. Caricchi , F. Crescimbini .
        15. Ficheux, R.L., Caricchi, F., Crescimbini, F., et al: ‘Axial-flux permanent-magnet motor for direct-drive elevator systems without machine room’, IEEE Trans. Ind. Appl., 2001, 37, (6), pp. 16931701.
        . IEEE Trans. Ind. Appl. , 6 , 1693 - 1701
    16. 16)
      • F. Caricchi , F. Crescimbini , E. Fedeli .
        16. Caricchi, F., Crescimbini, F., Fedeli, E., et al: ‘Design and construction of a wheel-directly-coupled axial-flux PM motor prototype for EVs’. IEEE Industry Applications Society Annual Meeting, 1994, pp. 254261.
        . IEEE Industry Applications Society Annual Meeting , 254 - 261
    17. 17)
      • C. Chen , Y. Wang , Y. Li .
        17. Chen, C., Wang, Y., Li, Y.: ‘Design and finite element analysis of integrated generator windings in high power density interior permanent magnet motors’. Int. Conf. on Electrical Machines and Systems (ICEMS), 26–29 October 2013, pp. 12131216.
        . Int. Conf. on Electrical Machines and Systems (ICEMS) , 1213 - 1216
    18. 18)
      • J.D. McFarland , T.M. Jahns , A.M. EL-Refaie .
        18. McFarland, J.D., Jahns, T.M., EL-Refaie, A.M., et al: ‘Effect of magnet properties on high power density and flux-weakening performance of high speed interior permanent magnet synchronous machines’. Energy Conversion Congress and Exposition (ECCE), 14–18 September 2014, pp. 42184225.
        . Energy Conversion Congress and Exposition (ECCE) , 4218 - 4225
    19. 19)
      • F. Liang , B.H. Lee , J.J. Lee .
        19. Liang, F., Lee, B.H., Lee, J.J., et al: ‘Study on high-efficiency characteristics of interior permanent magnet synchronous motor with different magnet material’. Proc. Int. Conf. on Electrical Machines and Systems (ICEMS), Tokyo, Japan, November 2009, pp. 14.
        . Proc. Int. Conf. on Electrical Machines and Systems (ICEMS) , 1 - 4
    20. 20)
      • A. Fasolo , L. Alberti , N. Bianchi .
        20. Fasolo, A., Alberti, L., Bianchi, N.: ‘Performance comparison between switching-flux and IPM machine with rare earth and ferrite PMs’, IEEE Trans. Ind. Appl., 2014, 50, pp. 37083716.
        . IEEE Trans. Ind. Appl. , 3708 - 3716
    21. 21)
      • S. Huang , J. Luo , F. Leonardi .
        21. Huang, S., Luo, J., Leonardi, F., et al: ‘A general approach to sizing and power density equations for comparison of electrical machines’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 9297.
        . IEEE Trans. Ind. Appl. , 1 , 92 - 97
    22. 22)
      • S.J. Galioto , P.B. Reddy , A.M. EL-Refaie .
        22. Galioto, S.J., Reddy, P.B., EL-Refaie, A.M., et al: ‘Effect of magnet types on performance of high speed spoke interior permanent magnet machines designed for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 21482160.
        . IEEE Trans. Ind. Appl. , 3 , 2148 - 2160
    23. 23)
      • M. van der Geest , J.A. Ferreira .
        23. van der Geest, M., Ferreira, J.A.: ‘Power density limits and design trends of high speed permanent magnet synchronous machines’, IEEE Trans. Transp. Electrific., 2015, 1, (3), pp. 266276.
        . IEEE Trans. Transp. Electrific. , 3 , 266 - 276
    24. 24)
      • M. Schiefer , M. Doppelbauer .
        24. Schiefer, M., Doppelbauer, M.: ‘Indirect slot cooling for high power density machines with concentrated winding’. Proc. Int. Conf. on Electrical Machines and Drives (IEMDC), Idaho, USA, May 2015, pp. 18201825.
        . Proc. Int. Conf. on Electrical Machines and Drives (IEMDC) , 1820 - 1825
    25. 25)
      • N. Tong , D. Wang , X. Chen .
        25. Tong, N., Wang, D., Chen, X., et al: ‘Design and analysis of interior permanent magnet synchronous motors with distributed winding for high power density application’. Proc. Int. Conf. on Electrical Machines and Systems (ICEMS), Chiba, Japan, November 2016, pp. 15.
        . Proc. Int. Conf. on Electrical Machines and Systems (ICEMS) , 1 - 5
    26. 26)
      • Y.B. Deshparde , H.A. Toliyat , S.S. Nair .
        26. Deshparde, Y.B., Toliyat, H.A., Nair, S.S., et al: ‘High-Torque-Density single tooth-wound Bar conductor permanent-magnet motor for electric Two wheeler application’, IEEE Trans. Ind. Appl., 2015, 51, pp. 21232135.
        . IEEE Trans. Ind. Appl. , 2123 - 2135
    27. 27)
      • M.F.J. Kremers , J.J.H. Paulides , E.A. Lomonova .
        27. Kremers, M.F.J., Paulides, J.J.H., Lomonova, E.A.: ‘Toward accurate design of a transverse flux machine using an analytical 3D magnetic charge model’, IEEE Trans. Magn., 2015, 51, (11), Article No. 8206804.
        . IEEE Trans. Magn. , 11
    28. 28)
      • W. Hua , G. Zhang , M. Cheng .
        28. Hua, W., Zhang, G., Cheng, M.: ‘Investigation and design of a high power flux switching permanent magnet machine for hybrid electric vehicles’, IEEE Trans. Magn., 2015, 51, (3), Article No. 8201805.
        . IEEE Trans. Magn. , 3
    29. 29)
      • J. Doering , G. Steinborn , W. Hofmann .
        29. Doering, J., Steinborn, G., Hofmann, W.: ‘Torque, power, losses and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk shaped rotor’, IEEE Trans. Ind. Appl., 2015, 51, pp. 14941504.
        . IEEE Trans. Ind. Appl. , 1494 - 1504
    30. 30)
      • A. Chen , R. Nilssen , A. Nysveen .
        30. Chen, A., Nilssen, R., Nysveen, A.: ‘Performance comparisons among radial flux, multi stage axial flux an three phase transverse flux PM machines for downhole applications’, IEEE Trans. Ind. Appl., 2010, 46, (2), pp. 779789.
        . IEEE Trans. Ind. Appl. , 2 , 779 - 789
    31. 31)
      • D. Kim , H. Hwang , S. Bae .
        31. Kim, D., Hwang, H., Bae, S., et al: ‘Analysis and design of a double stator flux switching permanent magnet machine using ferrite magnets in hybrid electric vehicles’, IEEE Trans. Magn., 2016, 52, (7).
        . IEEE Trans. Magn. , 7
    32. 32)
      • I. Jabaji , M. Grove .
        32. Jabaji, I., Grove, M.: ‘Alternator with regulation of multiple voltage outputs’. US Patent No. 6275012B1, 14 August 2001Publication No. US7245111B2.
        .
    33. 33)
      • C.C. Mi , G.R. Slemon , R. Bonert .
        33. Mi, C.C., Slemon, G.R., Bonert, R.: ‘Minimization of iron losses of permanent magnet synchronous machines’, IEEE Trans. Magn., 2005, 20, (1), pp. 121127.
        . IEEE Trans. Magn. , 1 , 121 - 127
    34. 34)
      • K. Yamazaki .
        34. Yamazaki, K.: ‘Torque and efficiency calculation of an interior permanent magnet motor considering harmonic iron losses of both the stator and rotor’, IEEE Trans. Magn., 2003, 39, (3), pp. 14601463.
        . IEEE Trans. Magn. , 3 , 1460 - 1463
    35. 35)
      • T. Finken , K. Hameyer .
        35. Finken, T., Hameyer, K.: ‘Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations’, IEEE Trans. Magn., 2008, 44, (6), pp. 15981601.
        . IEEE Trans. Magn. , 6 , 1598 - 1601
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0477
Loading

Related content

content/journals/10.1049/iet-epa.2017.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address