http://iet.metastore.ingenta.com
1887

High power density multiple output permanent magnet alternator

High power density multiple output permanent magnet alternator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The power electronic equipment is very much required when the alternator, capable of providing certain voltage level with a certain frequency, has to supply power to the load that needs voltage level or frequency other than the rated voltage and rated frequency of the alternator. At the same time, the power electronic circuit will also become complex if the alternator is to be provided with multiple outputs of different voltages with different frequencies. Therefore, a hybrid flux permanent magnet alternator (PMA) with multiple outputs is proposed in this study by utilising both radial flux permanent magnet (PM) technology and axial flux PM technology. The utilisation of both radial and axial flux PM technologies in the proposed hybrid flux multiple output PMA increases the power density also compared with that of conventional multiple output PMA. A comparison study is carried out between the conventional PMA and proposed hybrid flux multiple output PMA for the same volume and the same is also validated with finite-element method software and prototype testing.

References

    1. 1)
      • 1. Fernando, W.U.N., Gerada, C.: ‘High speed permanent-magnet machine design with minimized stack-length under electromagnetic and mechanical constraints’, Int. J. Appl. Electromagn., 2014, 46, (1), pp. 95109.
    2. 2)
      • 2. Boglietti, A., Gerada, C., Cavagnino, A.: ‘High-speed electrical machines and drives’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29432945.
    3. 3)
      • 3. Boisson, J., Louf, F., Ojeda, J., et al: ‘Analytical approach for mechanical resonance frequencies of high-speed machines’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30813088.
    4. 4)
      • 4. Borisavljevic, A., Polinder, H., Ferreira, J.A.: ‘On the speed limits of permanent-magnet machines’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 220227.
    5. 5)
      • 5. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘Design aspects of high-speed high-power-density laminated-rotor induction machines’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 40394047.
    6. 6)
      • 6. Gerada, D., Mebarki, A., Brown, N.L., et al: ‘High-speed electrical machines: technologies, trends, and developments’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29462959.
    7. 7)
      • 7. Tenconi, A., Vaschetto, S., Vigliani, A.: ‘Electrical machines for highspeed applications: design considerations and tradeoffs’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 30223029.
    8. 8)
      • 8. Tuysuz, A., Zwyssig, C., Kolar, J.W.: ‘A novel motor topology for high-speed micro-machining applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29602968.
    9. 9)
      • 9. Uzhegov, N., Kurvinen, E., Nerg, J., et al: ‘Multidisciplinary design process of a 6-slot 2-pole highspeed permanent-magnet synchronous machine’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 784795.
    10. 10)
      • 10. Aigbomian, A., Arumugam, P., Hamiti, T., et al: ‘Fast computing tool for performance evaluation in interior permanent-magnet machines’. Proc. Int. Conf. on Electrical Machines, September 2014, pp. 27222727.
    11. 11)
      • 11. Chau, K.T., Fan, Y., Cheng, M.: ‘A novel three-phase doubly salient permanent magnet machine for wind power generation’. Industry Applications Conf., 3–7 October 2004, pp. 366372.
    12. 12)
      • 12. Cheng, M., Chau, K.T., Chan, C.C., et al: ‘Control and operation of a new 8/6-pole doubly salient permanent magnet motor drive’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 13631371.
    13. 13)
      • 13. Cheng, M., Chau, K.T., Chan, C.C.: ‘Static characteristics of a new doubly salient permanent magnet motor’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 2025.
    14. 14)
      • 14. Aydin, M., Guven, M.K.: ‘Design of several permanent magnet synchronous generators for high power traction applications’. Electrical Machines and Drives Conf. (IEMDC), 12–15 May 2013, pp. 8187.
    15. 15)
      • 15. Ficheux, R.L., Caricchi, F., Crescimbini, F., et al: ‘Axial-flux permanent-magnet motor for direct-drive elevator systems without machine room’, IEEE Trans. Ind. Appl., 2001, 37, (6), pp. 16931701.
    16. 16)
      • 16. Caricchi, F., Crescimbini, F., Fedeli, E., et al: ‘Design and construction of a wheel-directly-coupled axial-flux PM motor prototype for EVs’. IEEE Industry Applications Society Annual Meeting, 1994, pp. 254261.
    17. 17)
      • 17. Chen, C., Wang, Y., Li, Y.: ‘Design and finite element analysis of integrated generator windings in high power density interior permanent magnet motors’. Int. Conf. on Electrical Machines and Systems (ICEMS), 26–29 October 2013, pp. 12131216.
    18. 18)
      • 18. McFarland, J.D., Jahns, T.M., EL-Refaie, A.M., et al: ‘Effect of magnet properties on high power density and flux-weakening performance of high speed interior permanent magnet synchronous machines’. Energy Conversion Congress and Exposition (ECCE), 14–18 September 2014, pp. 42184225.
    19. 19)
      • 19. Liang, F., Lee, B.H., Lee, J.J., et al: ‘Study on high-efficiency characteristics of interior permanent magnet synchronous motor with different magnet material’. Proc. Int. Conf. on Electrical Machines and Systems (ICEMS), Tokyo, Japan, November 2009, pp. 14.
    20. 20)
      • 20. Fasolo, A., Alberti, L., Bianchi, N.: ‘Performance comparison between switching-flux and IPM machine with rare earth and ferrite PMs’, IEEE Trans. Ind. Appl., 2014, 50, pp. 37083716.
    21. 21)
      • 21. Huang, S., Luo, J., Leonardi, F., et al: ‘A general approach to sizing and power density equations for comparison of electrical machines’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 9297.
    22. 22)
      • 22. Galioto, S.J., Reddy, P.B., EL-Refaie, A.M., et al: ‘Effect of magnet types on performance of high speed spoke interior permanent magnet machines designed for traction applications’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 21482160.
    23. 23)
      • 23. van der Geest, M., Ferreira, J.A.: ‘Power density limits and design trends of high speed permanent magnet synchronous machines’, IEEE Trans. Transp. Electrific., 2015, 1, (3), pp. 266276.
    24. 24)
      • 24. Schiefer, M., Doppelbauer, M.: ‘Indirect slot cooling for high power density machines with concentrated winding’. Proc. Int. Conf. on Electrical Machines and Drives (IEMDC), Idaho, USA, May 2015, pp. 18201825.
    25. 25)
      • 25. Tong, N., Wang, D., Chen, X., et al: ‘Design and analysis of interior permanent magnet synchronous motors with distributed winding for high power density application’. Proc. Int. Conf. on Electrical Machines and Systems (ICEMS), Chiba, Japan, November 2016, pp. 15.
    26. 26)
      • 26. Deshparde, Y.B., Toliyat, H.A., Nair, S.S., et al: ‘High-Torque-Density single tooth-wound Bar conductor permanent-magnet motor for electric Two wheeler application’, IEEE Trans. Ind. Appl., 2015, 51, pp. 21232135.
    27. 27)
      • 27. Kremers, M.F.J., Paulides, J.J.H., Lomonova, E.A.: ‘Toward accurate design of a transverse flux machine using an analytical 3D magnetic charge model’, IEEE Trans. Magn., 2015, 51, (11), Article No. 8206804.
    28. 28)
      • 28. Hua, W., Zhang, G., Cheng, M.: ‘Investigation and design of a high power flux switching permanent magnet machine for hybrid electric vehicles’, IEEE Trans. Magn., 2015, 51, (3), Article No. 8201805.
    29. 29)
      • 29. Doering, J., Steinborn, G., Hofmann, W.: ‘Torque, power, losses and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk shaped rotor’, IEEE Trans. Ind. Appl., 2015, 51, pp. 14941504.
    30. 30)
      • 30. Chen, A., Nilssen, R., Nysveen, A.: ‘Performance comparisons among radial flux, multi stage axial flux an three phase transverse flux PM machines for downhole applications’, IEEE Trans. Ind. Appl., 2010, 46, (2), pp. 779789.
    31. 31)
      • 31. Kim, D., Hwang, H., Bae, S., et al: ‘Analysis and design of a double stator flux switching permanent magnet machine using ferrite magnets in hybrid electric vehicles’, IEEE Trans. Magn., 2016, 52, (7).
    32. 32)
      • 32. Jabaji, I., Grove, M.: ‘Alternator with regulation of multiple voltage outputs’. US Patent No. 6275012B1, 14 August 2001Publication No. US7245111B2.
    33. 33)
      • 33. Mi, C.C., Slemon, G.R., Bonert, R.: ‘Minimization of iron losses of permanent magnet synchronous machines’, IEEE Trans. Magn., 2005, 20, (1), pp. 121127.
    34. 34)
      • 34. Yamazaki, K.: ‘Torque and efficiency calculation of an interior permanent magnet motor considering harmonic iron losses of both the stator and rotor’, IEEE Trans. Magn., 2003, 39, (3), pp. 14601463.
    35. 35)
      • 35. Finken, T., Hameyer, K.: ‘Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations’, IEEE Trans. Magn., 2008, 44, (6), pp. 15981601.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0477
Loading

Related content

content/journals/10.1049/iet-epa.2017.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address