access icon free Effect of voltage unbalance and distortion on the loss characteristics of three-phase cage induction motor

Voltage unbalance and distortion become one of the most common power quality problems in industrial utilities, which cause significant increase of the electromagnetic losses in induction motors. For energy saving of the induction motor system, there is a need for a detailed research of the loss characteristics of induction motor under unbalanced and distorted supply voltage. For accurate and fast prediction of the induction motor losses, this study proposes a method to identify rotor harmonics using the data from one supply cycle. The slip-frequency rotor harmonics are determined by using the space-time symmetrical characteristics of the induction motor. And based on a numerical method, the higher order harmonics of rotor flux density or current density are determined from data within one supply cycle. The electromagnetic losses are then calculated from those harmonics. With this method, the electromagnetic losses of a 5.5 kW induction motor under unbalanced and distorted supply voltage are calculated and analyzed. The proposed method and the analysis results are validated by comparing the predicted and measured motor losses of the 5.5 kW induction motor under different supply conditions.

Inspec keywords: rotors; current density; power supply quality; magnetic flux; harmonic distortion; numerical analysis; time-domain analysis; squirrel cage motors

Other keywords: slip-frequency rotor harmonics; numerical method; iron loss; voltage distortion effect; current density harmonic identification; space-time symmetrical characteristics; copper loss; energy saving; power 5.5 kW; rotor flux density harmonic identification; time-domain flux density harmonics; three-phase cage induction motor loss characteristics; single supply cycle; symmetric point space-domain flux density harmonics; industrial utilities; voltage unbalance effect; power quality problem; electromagnetic losses

Subjects: Mathematical analysis; Asynchronous machines; Power supply quality and harmonics

References

    1. 1)
      • 6. Steinmetz, C.P.: ‘On the law of hysteresis (originally published in 1892)’, Proc. IEEE, 1984, 72, (2), pp. 197221.
    2. 2)
      • 14. Lim, M.S., Chai, S.H., Hong, J.P.: ‘Design and iron loss analysis of sensorless-controlled interior permanent magnet synchronous motors with concentrated winding’, IET Electr. Power Appl., 2014, 8, (9), pp. 349356.
    3. 3)
      • 2. IEEE Recommended Practice for Electric Power Distribution for Industrial Plants, ANSI/IEEE Standard 112, 1991.
    4. 4)
      • 26. Zhao, H., Zhang, D.: ‘No-load iron loss distribution characteristics and its fine analysis for inverter-fed induction motors’, Proc. CSEE, 2016, 36, (8), pp. 22612269.
    5. 5)
      • 19. Stumper, J.F., Dötlinger, A., Kennel, R.: ‘Loss minimization of induction machines in dynamic operation’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 726735.
    6. 6)
      • 18. Popescu, M., Ionel, D.: ‘A best-fit model of power losses in cold rolled-motor lamination steel operating in a wide range of frequency and magnetization’, IEEE Trans. Magn., 2007, 43, (4), pp. 17531756.
    7. 7)
      • 17. Ionel, D.M., Popescu, M., Dellinger, S.J., et al: ‘On the variation with flux and frequency of the core loss coefficients in electrical machines’, IEEE Trans. Ind. Appl., 2006, 42, (3), pp. 658667.
    8. 8)
      • 8. Eggers, D., Steentjes, S., Hameyer, K.: ‘Advanced iron-loss estimation for nonlinear material behavior’, IEEE Trans. Magn., 2012, 48, (11), pp. 30213024.
    9. 9)
      • 4. Materu, P., Krishnan, R.: ‘Estimation of switched reluctance motor losses’, IEEE Trans. Ind. Appl., 1992, 28, (3), pp. 668679.
    10. 10)
      • 7. Bertotti, G.: ‘General properties of power losses in soft ferromagnetic materials’, IEEE Trans. Magn., 1988, 24, (1), pp. 621630.
    11. 11)
      • 24. Motor and Generators, Part 14.36: Effects of unbalanced voltages on the performance of polyphase induction motors, NEMA Standard MG1-1998 (Revision 3, 2002), 2002.
    12. 12)
      • 23. Zhang, F., Du, G., Wang, T., et al: ‘Electromagnetic design and loss calculations of a 1.12-MW high-speed permanent-magnet motor for compressor applications’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 132139.
    13. 13)
      • 13. Hussain, S., Lowther, D.A.: ‘The modified Jiles–Atherton model for the accurate prediction of iron losses’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    14. 14)
      • 10. Kowal, D., Sergeant, P., Dupré, L., et al: ‘Comparison of iron loss models for electrical machines with different frequency domain and time domain methods for excess loss prediction’, IEEE Trans. Magn., 2015, 51, (1), pp. 110.
    15. 15)
      • 25. Zhao, H., Liu, X.: ‘Stator slot optimal design of premium motors based on time-stepping finite element method’, Proc. CSEE, 2010, 31, (33), pp. 115122.
    16. 16)
      • 22. Pillay, P., Al-Badri, M., Angers, P., et al: ‘A new stray-load loss formula for small and medium-sized induction motors’, IEEE Trans. Energy Convers., 2016, 31, (3), pp. 12211227.
    17. 17)
      • 11. Chen, L., Chen, H., Yan, W.: ‘A fast iron loss calculation model for switched reluctance motors’, IET Electr. Power Appl., 2017, 11, (3), pp. 478486.
    18. 18)
      • 9. Xue, S., Chu, W.Q., Zhu, Z.Q., et al: ‘Iron loss calculation considering temperature influence in non-oriented steel laminations’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 846854.
    19. 19)
      • 5. Knight, A.M., Salmon, J.C., Ewanchuk, J.: ‘Integration of a first order eddy current approximation with 2D FEA for prediction of PWM harmonic losses in electrical machines’, IEEE Trans. Magn., 2013, 49, (5), pp. 19571960.
    20. 20)
      • 21. Schmitz, D., Sadowski, N., Nau, S.L., et al: ‘Three-phase electromagnetic device for the evaluation of the magnetic losses in electric motors’ stators’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 515521.
    21. 21)
      • 27. Zhang, D., Zhao, H., Wang, Y.: ‘A piecewise variable coefficient model for precise analysis on iron losses of electrical machines’, Trans. CES, 2016, 31, (15), pp. 1624.
    22. 22)
      • 1. Anwari, M., Hiendro, A.: ‘New unbalance factor for estimating performance of a three-phase induction motor with under- and overvoltage unbalance’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 619625.
    23. 23)
      • 3. Knight, A.M., Zhan, Y.: ‘Identification of flux density harmonics and resulting iron losses in induction machines with nonsinusoidal supplies’, IEEE Trans. Magn., 2008, 44, (6), pp. 14.
    24. 24)
      • 12. Ibrahim, M., Pillay, P.: ‘Core loss prediction in electrical machine laminations considering skin effect and minor hysteresis loops’, IEEE Trans. Ind. Appl., 2013, 49, (5), pp. 20612068.
    25. 25)
      • 20. Santos, V.S., Felipe, P.R.V., Sarduy, J.R.G., et al: ‘Procedure for determining induction motor efficiency working under distorted grid voltages’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 331338.
    26. 26)
      • 15. Haisen, Z., Yilong, W., Dongdong, Z., et al: ‘Piecewise variable parameter model for precise analysis of iron losses in induction motors’, IET Electr. Power Appl., 2017, 11, (3), pp. 361368.
    27. 27)
      • 16. Kowal, D., Sergeant, P., Dupré, L., et al: ‘Comparison of frequency and time-domain iron and magnet loss modeling including PWM harmonics in a PMSG for a wind energy application’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 476485.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0464
Loading

Related content

content/journals/10.1049/iet-epa.2017.0464
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading