access icon free Implementation of different 2D finite element modelling approaches in axial flux permanent magnet disc machines

Three-dimensional (3D) finite element (FE) modelling of axial flux permanent magnet (AFPM) motors is one of the time-consuming tasks which must be completed before manufacturing the prototype motor. A simple, fast, accurate, and effective numerical modelling approach for such 3D problems would be particularly useful for researchers. This study presents simple and effective 2D FE modelling approaches for AFPM motors with good accuracy with less computational effort. The modelling approaches are based on a number of 2D models or planes with inner rotor, outer rotor, or linear motor topologies. All the 2D planes with either topology are superposed together to represent the real AFPM machine. These approaches are examined in detail with various types of experimentally verified AFPM motors. Results obtained from the proposed modelling approaches are verified with 3D FE analyses and experimental data. The results indicate that the proposed 2D modelling approaches can significantly reduce the computation time with good accuracy as opposed to conventional 3D FE modelling of AFPM motors.

Inspec keywords: magnetic flux; permanent magnet motors; finite element analysis

Other keywords: 3D FE analyses; AFPM motors; three-dimensional FE modelling; 2D finite element modelling; axial flux permanent magnet disc machines

Subjects: d.c. machines; Finite element analysis; a.c. machines

References

    1. 1)
      • 12. Vansompel, H., Sergeant, P., Dupré, L.: ‘Optimized design considering the mass influence of an axial flux permanent-magnet synchronous generator with concentrated pole windings’, IEEE Trans. Magn., 2010, 46, (12), pp. 41014107.
    2. 2)
      • 14. Zhang, Z., Profumo, F., Tenconi, A., et al: ‘Analysis and experimental validation of performance for an axial flux permanent magnet brushless DC motor with powder iron metallurgy cores’, IEEE Trans. Magn., 1997, 33, (5), pp. 41944196.
    3. 3)
      • 9. Donato, G.D., Capponi, F.G., Caricchi, F.: ‘No-load performance of axial flux permanent magnet machines mounting magnetic wedges’, IEEE Trans. Ind. Electron., 2012, 59, (10), pp. 37683779.
    4. 4)
      • 2. Sitapati, K., Krishnan, R.M.: ‘Performance comparisons of radial and axial field, permanent-magnet, brushless machines’, IEEE Trans. Ind. Appl., 2001, 37, (3), pp. 12191226.
    5. 5)
      • 13. Tiegna, H., Bellara, A., Amara, Y., et al: ‘Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots’, IEEE Trans. Magn., 2012, 48, (3), pp. 12121226.
    6. 6)
      • 3. Gieras, J.F., Wang, R., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines’ (Kluwer, 2004).
    7. 7)
      • 21. Parviainen, A., Niemela, M., Pyrhonen, J.: ‘Modeling axial-flux permanent-magnet machines’, IEEE Trans. Ind. Appl., 2004, 40, (5), pp. 13331340.
    8. 8)
      • 11. Hill-Cottingham, R.J., Coles, P.C., Rodger Lai, D.: ‘Finite element modelling of an axial flux PM machine’. Proc. Int. Conf. on Power Electronics, Machines and Drives, Edinburg, UK, April 2004, pp. 552555.
    9. 9)
      • 15. Egea, A., Almandoz, G., Poza, J., et al: ‘Axial-flux-machine modeling with the combination of FEM-2-D and analytical tools’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13181326.
    10. 10)
      • 19. Hekmati, P., Yazdanpanah, R., Mirsalim, M.: ‘Design and analysis of double-sided slotless axial-flux permanent magnet machines with conventional and new stator core’, IET Electr. Power Appl., 2015, 9, (3), pp. 193202.
    11. 11)
      • 18. Seo, J.M., Ro, J., Rhyu, S., et al: ‘Novel hybrid radial and axial flux permanent-magnet machine using integrated windings for high-power density’, IEEE Trans. Magn., 2015, 51, (3), Article Sequence Number: 8100804.
    12. 12)
      • 10. Donato, G.D., Capponi, F.G., F.Caricchi, F.: ‘On the use of magnetic wedges in axial flux permanent magnet machines’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 48314840.
    13. 13)
      • 1. Cavagnino, M., Lazzari, F., Profumo, A.: ‘A comparison between the axial flux and the radial flux structures for PM synchronous motors’, IEEE Trans. Ind. Appl., 2002, 34, (6), pp. 15171524.
    14. 14)
      • 8. Nguyen, T.D., Tseng, K.J., Zhang, S., et al: ‘A novel axial flux permanent-magnet machine for flywheel energy storage system: design and analysis’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 37843794.
    15. 15)
      • 6. Aydin, M., Zhu, Z.Q., Lipo, T.A., et al: ‘Minimization of cogging torque in axial-flux permanent-magnet machines: design concepts’, IEEE Trans. Magn., 2007, 43, (9), pp. 36143622.
    16. 16)
      • 17. Zhao, F., Lipo, T.A., Kwon, B.: ‘A novel dual-stator axial-flux spoke-type permanent magnet vernier machine for direct-drive applications’, IEEE Trans. Magn., 2014, 50, (11), Article Sequence Number: 8104304.
    17. 17)
      • 20. Hao, L., Lin, M., Xu, D., et al: ‘Cogging torque reduction of axial-field flux-switching permanent magnet machine by rotor tooth notching’, IEEE Trans. Magn., 2015, 51, (11), Article Sequence Number: 8208304.
    18. 18)
      • 7. Aydin, M., Guven, M.K.: ‘Comparing various PM synchronous generators: a feasible solution for high-power, off-highway, series hybrid, electric traction applications’, IEEE Trans. Veh. Technol., 2014, 9, (1), pp. 3645.
    19. 19)
      • 4. Chan, C.C.: ‘Axial-field electrical machines-design and applications’, IEEE Trans. Energy Convers., 1987, EC-2, (2), pp. 294300.
    20. 20)
      • 16. Maloberti, O., Figueredo, R., Marchand, C., et al: ‘3-D–2-D dynamic magnetic modeling of an axial flux permanent magnet motor with soft magnetic composites for hybrid electric vehicles’, IEEE Trans. Magn., 2014, 50, (6), Article Sequence Number: 8201511.
    21. 21)
      • 5. Aydin, M., Huang, S., Lipo, T.A.: ‘Torque quality and comparison of internal and external rotor axial flux surface-magnet disc machines’, IEEE Trans. Ind. Electron., 2006, 53, (3), pp. 822830.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0434
Loading

Related content

content/journals/10.1049/iet-epa.2017.0434
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading