Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Instantaneous harmonic decomposition technique for three-phase current based on multiple reference coordinates

Current harmonic decomposition is important to power systems. Current signal is classified into stationary and non-stationary signal according to whether the parameters change with time. This study focuses on the instantaneous harmonic decomposition of three-phase permanent magnet synchronous motor currents in non-stationary process. First, based on the definition of the instantaneous frequency in non-stationary process, the concept of the spatial frequency based on the electrical angle is proposed. Under this definition, the spatial frequency no longer varies with the rotational speed. A new instantaneous harmonic decomposition method based on multiple reference coordinates is then proposed. To verify the effectiveness of the new method, it is used to analyse constructed currents and experimental currents. Finally, the new method is compared with other analysis methods and proved to be the most accurate and effective.

References

    1. 1)
      • 6. Xiao, Y., Mao, X., Zhou, J., et al: ‘A survey on measuring method for harmonics in power system’, Power Syst. Technol., 2002, 6, pp. 6164.
    2. 2)
      • 16. Pham, V.L., Wong, K.P.: ‘Wavelet-transform-based algorithm for harmonic analysis of power system waveforms’, IEE Proc. Gener. Transm. Distrib., 1999, 146, (3), pp. 249254.
    3. 3)
      • 7. Harris, F.J.: ‘On the use of windows for harmonic analysis with the discrete Fourier transform’, Proc. IEEE, 1978, 66, (1), pp. 5183.
    4. 4)
      • 5. Guan, B., Zhao, Y., Ruan, Y.: ‘Torque ripple minimization in interior PM machines using FEM and multiple reference frames’. 2006 1st IEEE Conf. Industrial Electronics and Applications, May 2006, pp. 16.
    5. 5)
      • 14. Gabor, D.: ‘Theory of communication. Part 1: the analysis of information’, J. Inst. Electr. Eng. Part III: Radio Commun. Eng., 1946, 93, (26), pp. 429441.
    6. 6)
      • 9. Grandke, T.: ‘Interpolation algorithms for discrete Fourier transforms of weighted signals’, IEEE Trans. Instrum. Meas., 1983, 32, (2), pp. 350355.
    7. 7)
      • 24. Astrom, K.J., Wittenmark, B.: ‘Computer-controlled systems: theory and design’ (Prentice Hall PTR, New Jersey, USA, 2013).
    8. 8)
      • 19. Cohen, L.: ‘Time-frequency analysis’ (Prentice Hall PTR, New Jersey, USA, 1995).
    9. 9)
      • 2. Qin, Y., Qin, S., Mao, Y.: ‘Research on iterated Hilbert transform and its application in mechanical fault diagnosis’, Mech. Syst. Signal Process., 2008, 22, (8), pp. 19671980.
    10. 10)
      • 18. Gianfelici, F., Biagetti, G., Crippa, P., et al: ‘Multicomponent AM–FM representations: an asymptotically exact approach’, IEEE Trans. Audio Speech Language Process., 2007, 15, (3), pp. 823837.
    11. 11)
      • 11. Wen, H., Zhang, J., Meng, Z., et al: ‘Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 1626.
    12. 12)
      • 10. Zeng, B., Teng, Z., Cai, Y., et al: ‘Harmonic phasor analysis based on improved FFT algorithm’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 5159.
    13. 13)
      • 4. Alvanitopoulos, P., Papavasileiou, M., Andreadis, I., et al: ‘Seismic intensity feature construction based on the Hilbert–Huang transform’, IEEE Trans. Instrum. Meas., 2012, 61, (2), pp. 326337.
    14. 14)
      • 1. Gianfelici, F., Biagetti, G., Crippa, P., et al: ‘AM-FM decomposition of speech signals: an asymptotically exact approach based on the iterated Hilbert transform’. 2005 IEEE/SP 13th Workshop on Statistical Signal Processing, 2005, pp. 333338.
    15. 15)
      • 23. Zhao, Z., Zhou, M., Qu, X., et al: ‘Even-order harmonic suppression for voltage source converters based on improved space vector PWM method’, Autom. Electron. Power Syst., 2013, 37, (8), pp. 112116.
    16. 16)
      • 8. Jain, V.K., Collins, W.L., Davis, D.C.: ‘High-accuracy analog measurements via interpolated FFT’, IEEE Trans. Instrum. Meas., 1979, 28, (2), pp. 113122.
    17. 17)
      • 17. Huang, N.E., Shen, Z., Long, S.R.: ‘A new view of nonlinear water waves: the hilbert spectrum 1’, Annu. Rev. Fluid Mech., 1999, 31, (1), pp. 417457.
    18. 18)
      • 21. Lee, G.H., Kim, S.I., Hong, J.P., et al: ‘Torque ripple reduction of interior permanent magnet synchronous motor using harmonic injected current’, IEEE Trans. Magn., 2008, 44, (6), pp. 15821585.
    19. 19)
      • 22. Madani, A., Barbot, J.P., Colamartino, F., et al: ‘Reduction of torque pulsations by inductance harmonics identification of a permanent-magnet synchronous machine’. Proc. 4th IEEE Conf. Control Applications, September 1995, pp. 787792.
    20. 20)
      • 12. Peng, G.Z., Radzi, M.A.M., Von, T.Y., et al: ‘Hybrid FFT-ADALINE algorithm with fast estimation of harmonics in power system’, IET Signal Process., 2016, 10, (8), pp. 855864.
    21. 21)
      • 15. Daubechies, I.: ‘Ten lecture on wavelets, CBMS series’, SIMA, Phila., 1992, 61, pp. 198202.
    22. 22)
      • 3. Li, H., Kwong, S., Yang, L., et al: ‘Hilbert-Huang transform for analysis of heart rate variability in cardiac health’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2011, 8, (6), pp. 15571567.
    23. 23)
      • 20. Lyons, R.G.: ‘Understanding digital signal processing’ (Prentice Hall PTR, New Jersey, USA, 2010).
    24. 24)
      • 13. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 1998, 454, (1971), pp. 903995.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0433
Loading

Related content

content/journals/10.1049/iet-epa.2017.0433
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address