access icon free Low-noise design of fault-tolerant flux-switching permanent-magnet machines

The high variable flux density in the air-gap of fault-tolerant flux-switching permanent-magnet (FT-FSPM) machine results in rich harmonics of the magnetic field, thus generating large vibration and noise. This study proposes two novel FT-FSPM machines which can effectively reduce the radial pressure, thus reducing the vibration and noise. First, the radial pressure of the initial FT-FSPM machine is analysed. Second, the novel proposed FT-FSPM machines are introduced and analysed. Third, the electromagnetic performance, including back electromotive force, output torque, inductance, and radial pressure harmonics, of the initial and the two proposed machines are compared by finite element method. Then, the vibration modes with corresponding natural frequencies are predicted. The vibration and noise are simulated by boundary element method. Finally, the effectiveness of the low-noise design is verified by measurement results.

Inspec keywords: harmonics; fault tolerance; magnetic flux; finite element analysis; boundary-elements methods; permanent magnet machines; magnetic fields; electric potential

Other keywords: noise generation; FT-FSPM machines; output torque; radial pressure reduction; boundary element method; air-gap; fault-tolerant flux-switching permanent-magnet machines; finite element method; low-noise design; back electromotive force; magnetic field harmonics; high variable flux density; inductance; radial pressure harmonics; electromagnetic performance; vibration generation

Subjects: Finite element analysis; a.c. machines; d.c. machines; Electrostatics; Power supply quality and harmonics

References

    1. 1)
      • 3. Zhu, Z.Q., Al-Ani, M., Lee, B., et al: ‘Comparative study of the electromagnetic performance of switched flux permanent magnet machines’, IET Electr. Power Appl., 2015, 9, (4), pp. 297306.
    2. 2)
      • 12. Xue, X., Zhao, W., Zhu, J., et al: ‘Design of five-phase modular flux-switching permanent-magnet machines for high reliability applications’, IEEE Trans. Magn., 2013, 49, (7), pp. 39413944.
    3. 3)
      • 4. Hwang, C.C., Chang, C.M., Hung, S.S., et al: ‘Design of high performance flux switching PM machines with concentrated windings’, IEEE Trans. Magn., 2014, 50, (1), p. 4002404.
    4. 4)
      • 16. Chen, J.T., Zhu, Z.Q.: ‘Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 293302.
    5. 5)
      • 10. Raminosoa, T., Gerada, C., Galea, M.: ‘Design considerations for a fault-tolerant flux-switching permanent-magnet machine’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28182825.
    6. 6)
      • 20. Gan, C., Wu, J., Shen, M., et al: ‘Investigation of skewing effects on the vibration reduction of three-phase switched reluctance motors’, IEEE Trans. Magn., 2015, 51, (9), p. 8203509.
    7. 7)
      • 1. Hua, W., Zhang, H., Cheng, M., et al: ‘An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 6980.
    8. 8)
      • 8. Hua, W., Su, P., Tong, M., et al: ‘Investigation of a five-phase E-core hybrid-excitation flux-switching machine for EV and HEV applications’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 124133.
    9. 9)
      • 21. Islam, M.S., Islam, R., Sebastian, T.: ‘Noise and vibration characteristics of permanent-magnet synchronous motors using electromagnetic and structural analyses’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 32143222.
    10. 10)
      • 9. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless AC machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    11. 11)
      • 11. Aboelhassan, M.O.E., Raminosoa, T., Goodman, A., et al: ‘Performance evaluation of a vector-control fault-tolerant flux-switching motor drive’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 29973006.
    12. 12)
      • 6. Shao, L., Hua, W., Zhu, Z.Q., et al: ‘A novel flux-switching permanent magnet machine with overlapping windings’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 172183.
    13. 13)
      • 14. Wang, Q., Chen, H., Xu, T., et al: ‘Influence of mover yoke and winding connections on unbalanced normal force for double-sided linear switched reluctance machine’, IET Electr. Power Appl., 2016, 10, (2), pp. 91100.
    14. 14)
      • 17. McFarland, J.D., Jahns, T.M., El-Refaie, A.M.: ‘Analysis of the torque production mechanism for flux-switching permanent-magnet machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30413049.
    15. 15)
      • 7. Kim, J.H., Li, Y., Sarlioglu, B.: ‘Novel six-slot four-pole axial flux-switching permanent magnet machine for electric vehicle’, IEEE Trans. Transp. Electrif., 2017, 3, (1), pp. 108117.
    16. 16)
      • 18. Abdollahi, S.E., Vaez-Zadeh, S.: ‘Reducing cogging torque in flux switching motors with segmented rotor’, IEEE Trans. Magn., 2013, 49, (10), pp. 53045309.
    17. 17)
      • 13. Castano, S.M., Bilgin, B., Lin, J., et al: ‘Radial forces and vibration analysis in an external-rotor switched reluctance machine’, IET Electr. Power Appl., 2017, 11, (2), pp. 252259.
    18. 18)
      • 15. Lin, F., Zuo, S., Deng, W., et al: ‘Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 74557466.
    19. 19)
      • 5. Zhu, Z.Q., Al-Ani, M.M. J., Liu, X., et al: ‘A mechanical flux weakening method for switched flux permanent magnet machines’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 806815.
    20. 20)
      • 19. Verez, G., Barakat, G., Amara, Y., et al: ‘Impact of pole and slot combination on noise and vibrations of flux-switching PM machines’. Proc. Int. Conf. Electrical Machines, 2014, pp. 182188.
    21. 21)
      • 2. Wang, T., Liu, C., Xu, W., et al: ‘Fabrication and experimental analysis of an axially laminated flux-switching permanent-magnet machine’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 10811091.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0392
Loading

Related content

content/journals/10.1049/iet-epa.2017.0392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading