http://iet.metastore.ingenta.com
1887

Low-noise design of fault-tolerant flux-switching permanent-magnet machines

Low-noise design of fault-tolerant flux-switching permanent-magnet machines

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The high variable flux density in the air-gap of fault-tolerant flux-switching permanent-magnet (FT-FSPM) machine results in rich harmonics of the magnetic field, thus generating large vibration and noise. This study proposes two novel FT-FSPM machines which can effectively reduce the radial pressure, thus reducing the vibration and noise. First, the radial pressure of the initial FT-FSPM machine is analysed. Second, the novel proposed FT-FSPM machines are introduced and analysed. Third, the electromagnetic performance, including back electromotive force, output torque, inductance, and radial pressure harmonics, of the initial and the two proposed machines are compared by finite element method. Then, the vibration modes with corresponding natural frequencies are predicted. The vibration and noise are simulated by boundary element method. Finally, the effectiveness of the low-noise design is verified by measurement results.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0392
Loading

Related content

content/journals/10.1049/iet-epa.2017.0392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address