Low-noise design of fault-tolerant flux-switching permanent-magnet machines

Low-noise design of fault-tolerant flux-switching permanent-magnet machines

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The high variable flux density in the air-gap of fault-tolerant flux-switching permanent-magnet (FT-FSPM) machine results in rich harmonics of the magnetic field, thus generating large vibration and noise. This study proposes two novel FT-FSPM machines which can effectively reduce the radial pressure, thus reducing the vibration and noise. First, the radial pressure of the initial FT-FSPM machine is analysed. Second, the novel proposed FT-FSPM machines are introduced and analysed. Third, the electromagnetic performance, including back electromotive force, output torque, inductance, and radial pressure harmonics, of the initial and the two proposed machines are compared by finite element method. Then, the vibration modes with corresponding natural frequencies are predicted. The vibration and noise are simulated by boundary element method. Finally, the effectiveness of the low-noise design is verified by measurement results.


    1. 1)
      • 1. Hua, W., Zhang, H., Cheng, M., et al: ‘An outer-rotor flux-switching permanent-magnet-machine with wedge-shaped magnets for in-wheel light traction’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 6980.
    2. 2)
      • 2. Wang, T., Liu, C., Xu, W., et al: ‘Fabrication and experimental analysis of an axially laminated flux-switching permanent-magnet machine’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 10811091.
    3. 3)
      • 3. Zhu, Z.Q., Al-Ani, M., Lee, B., et al: ‘Comparative study of the electromagnetic performance of switched flux permanent magnet machines’, IET Electr. Power Appl., 2015, 9, (4), pp. 297306.
    4. 4)
      • 4. Hwang, C.C., Chang, C.M., Hung, S.S., et al: ‘Design of high performance flux switching PM machines with concentrated windings’, IEEE Trans. Magn., 2014, 50, (1), p. 4002404.
    5. 5)
      • 5. Zhu, Z.Q., Al-Ani, M.M. J., Liu, X., et al: ‘A mechanical flux weakening method for switched flux permanent magnet machines’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 806815.
    6. 6)
      • 6. Shao, L., Hua, W., Zhu, Z.Q., et al: ‘A novel flux-switching permanent magnet machine with overlapping windings’, IEEE Trans. Energy Convers., 2017, 32, (1), pp. 172183.
    7. 7)
      • 7. Kim, J.H., Li, Y., Sarlioglu, B.: ‘Novel six-slot four-pole axial flux-switching permanent magnet machine for electric vehicle’, IEEE Trans. Transp. Electrif., 2017, 3, (1), pp. 108117.
    8. 8)
      • 8. Hua, W., Su, P., Tong, M., et al: ‘Investigation of a five-phase E-core hybrid-excitation flux-switching machine for EV and HEV applications’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 124133.
    9. 9)
      • 9. Chen, J.T., Zhu, Z.Q., Iwasaki, S., et al: ‘A novel E-core switched-flux PM brushless AC machine’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 12731282.
    10. 10)
      • 10. Raminosoa, T., Gerada, C., Galea, M.: ‘Design considerations for a fault-tolerant flux-switching permanent-magnet machine’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 28182825.
    11. 11)
      • 11. Aboelhassan, M.O.E., Raminosoa, T., Goodman, A., et al: ‘Performance evaluation of a vector-control fault-tolerant flux-switching motor drive’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 29973006.
    12. 12)
      • 12. Xue, X., Zhao, W., Zhu, J., et al: ‘Design of five-phase modular flux-switching permanent-magnet machines for high reliability applications’, IEEE Trans. Magn., 2013, 49, (7), pp. 39413944.
    13. 13)
      • 13. Castano, S.M., Bilgin, B., Lin, J., et al: ‘Radial forces and vibration analysis in an external-rotor switched reluctance machine’, IET Electr. Power Appl., 2017, 11, (2), pp. 252259.
    14. 14)
      • 14. Wang, Q., Chen, H., Xu, T., et al: ‘Influence of mover yoke and winding connections on unbalanced normal force for double-sided linear switched reluctance machine’, IET Electr. Power Appl., 2016, 10, (2), pp. 91100.
    15. 15)
      • 15. Lin, F., Zuo, S., Deng, W., et al: ‘Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 74557466.
    16. 16)
      • 16. Chen, J.T., Zhu, Z.Q.: ‘Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 293302.
    17. 17)
      • 17. McFarland, J.D., Jahns, T.M., El-Refaie, A.M.: ‘Analysis of the torque production mechanism for flux-switching permanent-magnet machines’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 30413049.
    18. 18)
      • 18. Abdollahi, S.E., Vaez-Zadeh, S.: ‘Reducing cogging torque in flux switching motors with segmented rotor’, IEEE Trans. Magn., 2013, 49, (10), pp. 53045309.
    19. 19)
      • 19. Verez, G., Barakat, G., Amara, Y., et al: ‘Impact of pole and slot combination on noise and vibrations of flux-switching PM machines’. Proc. Int. Conf. Electrical Machines, 2014, pp. 182188.
    20. 20)
      • 20. Gan, C., Wu, J., Shen, M., et al: ‘Investigation of skewing effects on the vibration reduction of three-phase switched reluctance motors’, IEEE Trans. Magn., 2015, 51, (9), p. 8203509.
    21. 21)
      • 21. Islam, M.S., Islam, R., Sebastian, T.: ‘Noise and vibration characteristics of permanent-magnet synchronous motors using electromagnetic and structural analyses’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 32143222.

Related content

This is a required field
Please enter a valid email address