access icon free Cogging torque suppression in flux-reversal permanent magnet machines

In this paper, an analytical expression of cogging torque considering flux-leakage effect for FRPM machines with different magnetization methods of magnets is derived based on co-energy and magneto motive force-permeance model. Then, the influences of machine parameters (including PM width and rotor tooth width) on cogging torque as well as its harmonic spectra are analysed according to this derived model. Consequently, an effective method to diminish cogging torque is obtained by optimally choosing rotor tooth/PM width. Besides, the skewing and chamfering methods are also discussed. Then, with the aid of 2D finite element analysis (FEA), the above theoretical analysis and the proposed cogging torque suppression methods are verified by two exampled 6-stator-slot/8-rotor-pole FRPM machines with different magnetized magnets. Finally, these two exampled machines are fabricated and tested to further validate the derived model and FEA analysis. It turns out that the cogging torque of both magnetization methods are completely the same and it can be minimized by optimally choosing machine design parameters during the design stage. Then, combined with the skewing, cogging torque can be reduced further. However, chamfering is not recommended in this type of machine since it may aggravate asymmetric back-EMFs.

Inspec keywords: finite element analysis; permanent magnet machines; electric potential; rotors (mechanical); magnetisation

Other keywords: magnetomotive forcepermeance model; rotor; asymmetric back-electro-motive-forces; FRPM machines; flux-reversal permanent magnet machines; magnetisation methods; flux-leakage effect; two-dimensional finite element analysis; FEA analysis; cogging torque suppression; cogging torque

Subjects: d.c. machines; Finite element analysis; a.c. machines

References

    1. 1)
      • 14. Zhao, J., Yan, Y., Li, B., et al: ‘Influence of different rotor teeth shapes on the performance of flux switching permanent magnet machines used for electric vehicles’, Energies, 2014, 7, (12), pp. 80568075.
    2. 2)
      • 13. Fei, W., Luk, P.C.K., Shen, J.: ‘Torque analysis of permanent-magnet flux switching machines with rotor step skewing’, IEEE Trans. Magn., 2012, 10, (48), pp. 26642673.
    3. 3)
      • 10. Kim, T.H., Won, S.H., Bong, K., et al: ‘Reduction of cogging torque in flux-reversal machine by rotor teeth pairing’, IEEE Tran. Magn., 2005, 10, (41), pp. 39643966.
    4. 4)
      • 20. Zhu, L., Jiang, S.Z., Zhu, Z.Q., et al: ‘Analytical modeling of open-circuit air-gap field distributions in multisegment and multilayer interior permanent-magnet machines’, IEEE Trans. Magn., 2009, 8, (45), pp. 31213130.
    5. 5)
      • 9. Kim, Y.-S., Kim, T.H., Kim, Y.T., et al: ‘Various design techniques to reduce cogging torque in flux-reversal machines’. Proc. ICEMS, Nanjing, China, September 2005, pp. 261263.
    6. 6)
      • 7. Zhu, X., Hua, W.: ‘Back-EMF waveform optimization of flux-reversal permanent magnet machines’, AIP Adv., 2017, 5, (7), pp. 056613.
    7. 7)
      • 5. Gao, Y., Qu, R., Li, D., et al: ‘Consequent-pole flux-reversal permanent-magnet machine for electric vehicle propulsion’, IEEE Trans. Appl. Supercond., 2016, 4, (26), p. 5200105.
    8. 8)
      • 18. Li, D., Qu, R., Li, J., et al: ‘Synthesis of flux switching permanent magnet machines’, IEEE Trans. Energy Convers., 2015, 2, (99), pp. 106117.
    9. 9)
      • 16. Wang, D., Wang, X., Jung, S.-Y.: ‘Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths’, IEEE Trans. Magn., 2013, 5, (49), pp. 22952298.
    10. 10)
      • 19. Wu, Z.Z., Zhu, Z.Q.: ‘Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines’, IEEE Trans. Magn., 2015, 5, (51), p. 8105012.
    11. 11)
      • 11. Jin, M.J., Wang, Y., Shen, J.X., et al: ‘Cogging torque suppression in a permanent magnet flux switching integrated- starter- generator’, IET Electr. Power Appl., 2010, 8, (4), pp. 647656.
    12. 12)
      • 6. More, D.S., Fernandes, B.G.: ‘Power density improvement of three phase flux reversal machine with distributed winding’, IET Electr. Power Appl., 2010, 2, (4), pp. 109120.
    13. 13)
      • 12. Fei, W., Luk, P.C.K., Shen, J.: ‘Permanent-magnet flux-switching integrated starter generator with different rotor configurations for cogging torque and torque ripple mitigations’, IEEE Trans. Ind. Appl., 2011, 3, (47), pp. 12471256.
    14. 14)
      • 22. Zhu, Z.Q., Pang, Y., Howe, D., et al: ‘Analysis of electromagnetic performance of flux-switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model’, IEEE Trans. Magn., 2005, 11, (41), pp. 42774287.
    15. 15)
      • 2. Deodhar, R.P., Andersson, S., Boldea, I., et al: ‘The flux-reversal machine: a new brushless doubly-salient permanent magnet machine’. Proc. of IAS Annual Meeting, San Diego, USA, October 1996, pp. 786793.
    16. 16)
      • 15. Xu, W., Zhu, J., Zhang, Y., et al: ‘Cogging torque reduction for radially laminated flux-switching permanent magnet machine with 12/14 Poles’. Proc. 37th Annual Conf. IEEE Industrial Electronics Society, Melbourne, Australia, January 2011, pp. 35903599.
    17. 17)
      • 4. Zhu, X., Hua, W.: ‘An improved configuration for cogging torque reduction in flux-reversal permanent magnet machines’, IEEE Tran. Magn., 2017, 6, (53), p. 8102504.
    18. 18)
      • 21. Azar, Z., Zhu, Z.Q., Ombach, G.: ‘Influence of electric loading and magnetic saturation on cogging torque, back-EMF and torque ripple of PM machines’, IEEE Trans. Magn., 2012, 10, (48), pp. 26502658.
    19. 19)
      • 8. Vakil, G., Upadhyay, P., Sheth, N., et al: ‘Torque ripple reduction in the flux reversal motor by rotor pole shaping and stator excitation’. Proc. ICEMS, Wuhan, China, October 2008, pp. 29802985.
    20. 20)
      • 1. Cheng, M., Hua, W., Zhang, J., et al: ‘Overview of stator permanent magnet brushless machines’, IEEE Trans. Ind. Electron., 2011, 11, (58), pp. 50875101.
    21. 21)
      • 23. Zhu, X., Hua, W.: ‘Back-EMF waveform optimization of flux-switching permanent magnet machines’. Proc. ICEM, Lausanne, Switzerland, September 2016, pp. 24192425.
    22. 22)
      • 3. Hua, W., Su, P., Shi, M., et al: ‘The influence of magnetizations on bipolar stator surface-mounted permanent magnet machines’, IEEE Trans. Magn., 2015, 3, (51), p. 8201904.
    23. 23)
      • 17. Zhu, X., Hua, W., Cheng, M.: ‘Cogging torque minimization in flux-switching permanent magnet machines by tooth chamfering’. Proc. ECCE, Milwaukee, USA, 2016, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0342
Loading

Related content

content/journals/10.1049/iet-epa.2017.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading