access icon free Fault-tolerant predictive current control with two-vector modulation for six-phase permanent magnet synchronous machine drives

Multiphase machines and drives are attractive to researchers due to the capability of fault tolerance. Finite-control-set model predictive control (FCS-MPC) has been introduced to the post-fault operation of multiphase drives and is superior with rapid dynamic response. However, conventional FCS-MPC is always troubled with low switching frequency and the consequent current ripples. This study proposes a fault-tolerant two-vector predictive control (FT-TVPC) that utilises a zero voltage vector to modulate with the active vector in each sampling period. The post-fault model of the machine and the drive is obtained in original phase frame with the purpose of achieving various control modes with different reference currents. A group of experiments are carried out and proves the effectiveness of the proposed control technique on improving the current quality. The average switching frequency of the inverter increases in exchange. The results also demonstrate that different control modes have little influence but working conditions have a great impact on the improvement of performance.

Inspec keywords: electric current control; permanent magnet machines; predictive control; dynamic response; synchronous machines; electric drives; fault tolerant control

Other keywords: finite-control-set model predictive control; fault-tolerant two-vector predictive control; zero-voltage vector; reference currents; rapid dynamic response; fault-tolerant predictive current control; six-phase permanent magnet synchronous machine drives; post-fault operation; average switching frequency; working condition; current ripples; switching frequency; FCS-MPC; multiphase machines; multiphase drives; post-fault model; two-vector modulation; FT-TVPC; sampling period

Subjects: Synchronous machines; Optimal control; Control of electric power systems; Drives; Current control

References

    1. 1)
      • 4. Ryu, H.M., Kim, J.W., Sul, S.K.: ‘Synchronous-frame current control of multiphase synchronous motor under asymmetric fault condition due to open phases’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 10621070.
    2. 2)
      • 13. Morel, F., Lin.Shi, X., Retif, J.M., et al: ‘A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27152728.
    3. 3)
      • 21. Che, H.S., Duran, M.J., Levi, E., et al: ‘Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 54065416.
    4. 4)
      • 6. Tani, A., Mengoni, M., Zarri, L., et al: ‘Control of multiphase induction motors with an odd number of phases under open-circuit phase faults’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 565577.
    5. 5)
      • 10. Bermudez, M., Gonzalez.Prieto, I., Barrero, F., et al: ‘Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 902911.
    6. 6)
      • 23. Levi, E.: ‘Multiphase electric machines for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (5), pp. 18931909.
    7. 7)
      • 20. Ambrozic, V., Fiser, R., Nedeljkovic, D.: ‘Direct current control – a new current regulation principle’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 495503.
    8. 8)
      • 8. Duran, M.J., Prieto, I.G., Bermudez, M., et al: ‘Optimal fault-tolerant control of six-phase induction motor drives with parallel converters’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 629640.
    9. 9)
      • 22. Wang, W., Zhang, J., Cheng, M., et al: ‘Fault-tolerant control of dual three-phase permanent-magnet synchronous machine drives under open-phase faults’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 20522063.
    10. 10)
      • 5. Dwari, S., Parsa, L.: ‘Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back emf’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 476485.
    11. 11)
      • 11. Guzman, H., Duran, M.J., Barrero, F., et al: ‘Speed control of fivephase induction motors with integrated open-phase fault operation using model-based predictive current control techniques’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 44744484.
    12. 12)
      • 15. Barrero, F., Arahal, M.R., Gregor, R., et al: ‘A proof of concept study of predictive current control for vsi-driven asymmetrical dual three-phase ac machines’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 19371954.
    13. 13)
      • 19. Lim, C.S., Levi, E., Jones, M., et al: ‘Fcs-mpc-based current control of a five-phase induction motor and its comparison with pi-pwm control’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 149163.
    14. 14)
      • 25. Lu, H., Li, J., Qu, R., et al: ‘Reduction of unbalanced axial magnetic force in post-fault operation of a novel six-phase double-stator axial flux pm machine using model predictive control’, IEEE Trans. Ind. Appl., 2017, PP, (99), pp. 11.
    15. 15)
      • 18. Duran, M.J., Riveros, J.A., Barrero, F., et al: ‘Reduction of common-mode voltage in five-phase induction motor drives using predictive control techniques’, IEEE Trans. Ind. Appl., 2012, 48, (6), pp. 20592067.
    16. 16)
      • 14. Bolognani, S., Bolognani, S., Peretti, L., et al: ‘Design and implementation of model predictive control for electrical motor drives’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 19251936.
    17. 17)
      • 2. Chau, K.T., Chan, C.C., Liu, C.: ‘Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 22462257.
    18. 18)
      • 7. Duran, M.J., Barrero, F.: ‘Recent advances in the design, modeling, and control of multiphase machines – Part II’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 459468.
    19. 19)
      • 17. Duran, M.J., Prieto, J., Barrero, F., et al: ‘Predictive current control of dual three-phase drives using restrained search techniques’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 32533263.
    20. 20)
      • 3. Fu, J.R., Lipo, T.A.: ‘Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase’, IEEE Trans. Ind. Appl., 1994, 30, (5), pp. 12671274.
    21. 21)
      • 1. Levi, E., Bojoi, R., Profumo, F., et al: ‘Multiphase induction motor drives – a technology status review’, IET Elect. Power Appl., 2007, 1, (4), pp. 489516.
    22. 22)
      • 9. Guzman, H., Duran, M.J., Barrero, F., et al: ‘Comparative study of predictive and resonant controllers in fault-tolerant fivephase induction motor drives’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 606617.
    23. 23)
      • 12. Cheng, M., Yu, F., Chau, K.T., et al: ‘Dynamic performance evaluation of a nine-phase flux-switching permanent-magnet motor drive with model predictive control’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 45394549.
    24. 24)
      • 24. Zhao, Y., Lipo, T.A.: ‘Space vector pwm control of dual three-phase induction machine using vector space decomposition’, IEEE Trans. Ind. Appl., 1995, 31, (5), pp. 11001109.
    25. 25)
      • 16. Barrero, F., Prieto, J., Levi, E., et al: ‘An enhanced predictive current control method for asymmetrical six-phase motor drives’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 32423252.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0331
Loading

Related content

content/journals/10.1049/iet-epa.2017.0331
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading