Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comprehensive comparison of different structures of passive permanent magnet bearings

Here, different feasible configurations of passive permanent magnet bearings (PMBs) are presented and compared with each other. In these configurations, stiffness is improved by adding iron cores and air intervals between magnets. Bearings with opposite magnetisation stacking (standard) and rotating magnetisation stacking (Halbach) are studied here. A two-dimensional planner model is used to calculate the magnetic field and stiffness. The optimisation will be performed for obtaining maximum stiffness per magnet volume ratio. The results show that standard stacking with radially magnetised PMs and having back iron and air intervals between magnets is the most optimum structure. For larger dimensions of magnets, other structures will be useful too.

References

    1. 1)
      • 12. Jungmayr, G., Marth, E., Amrhein, W., et al: ‘Analytical stiffness calculation for permanent magnetic bearings with soft magnetic materials’, IEEE Trans. Magn., 2014, 50, (8), pp. 18.
    2. 2)
      • 3. Ravaud, R., Lemarquand, G., Lemarquand, V., et al: ‘Analytical calculation of the magnetic field created by permanent-magnet rings’, IEEE Trans. Magn., 2008, 44, (8), pp. 19821989.
    3. 3)
      • 1. Ravaud, R., Lemarquand, G., Lemarquand, V.: ‘Force and stiffness of passive magnetic bearings using permanent magnets. part 1: axial magnetization’, IEEE Trans. Magn., 2009, 45, (7), pp. 29963002.
    4. 4)
      • 5. Marth, E., Jungmayr, G., Amrhein, W.: ‘A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetization and its application to optimal bearing design’, IEEE Trans. Magn., 2014, 50, (5), pp. 18.
    5. 5)
      • 15. Le, Y., Fang, J., Sun, J.: ‘Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load’, IEEE Trans. Magn., 2015, 51, (1), pp. 19.
    6. 6)
      • 13. Filatov, A.V., Maslen, E.H.: ‘Passive magnetic bearing for flywheel energy storage systems’, IEEE Trans. Magn., 2001, 37, (6), pp. 39133924.
    7. 7)
      • 8. Lang, M., Fremerey, J.K.: ‘Optimization of permanent-magnet bearings’. 6th Int. Symp. on Magnetic Suspension Technology, Turin, Italy, October 2001, pp. 111116.
    8. 8)
      • 4. Yonnet, J.P.: ‘Analytical calculations of magnetic bearings’. Proc. 5th Int. Workshop on rare Earth-Cobalt Permanent Magnets and their Applications, Roanoke, Virginia, June 1981, pp. 199216.
    9. 9)
      • 20. Wu, L.J., Zhu, Z.Q., Staton, D., et al: ‘An improved subdomain model for predicting magnetic field of surface-mounted permanent magnet machines accounting for tooth-tips’, IEEE Trans. Magn., 2011, 47, (6), pp. 16931704.
    10. 10)
      • 6. Yonnet, J.P., Lemarquand, G., Hemmerlin, S., et al: ‘Stacked structures of passive magnetic bearings’, J. Appl. Phys., 1991, 70, (10), pp. 66336635.
    11. 11)
      • 9. Marth, E., Jungmayr, G., Panholzer, M., et al: ‘Optimization of stiffness per magnet volume ratio of discrete and continuous Halbach type permanent magnetic bearings’. Proc. 13th ISMB, 2012.
    12. 12)
      • 22. Lubin, T., Mezani, S., Rezzoug, A.: ‘Development of a 2-D analytical model for the electromagnetic computation of axial-field magnetic gears’, IEEE Trans. Magn., 2013, 49, (11), pp. 55075521.
    13. 13)
      • 7. Moser, R., Sandtner, J., Bleuler, H.: ‘Optimization of repulsive passive magnetic bearings’, IEEE Trans. Magn., 2006, 42, (8), pp. 20382042.
    14. 14)
      • 2. Ravaud, R., Lemarquand, G., Lemarquand, V.: ‘Force and stiffness of passive magnetic bearings using permanent magnets. part 2: radial magnetization’, IEEE Trans. Magn., 2009, 45, (9), pp. 33343342.
    15. 15)
      • 14. Filatov, A., Hawkins, L., Krishnan, V., et al: ‘Active axial electromagnetic damper’. Proc. 11th ISMB, 2000.
    16. 16)
      • 10. Earnshaw, S.: ‘On the nature of the molecular forces which regulate the constitution of the luminiferous ether’, Trans. Cambridge Phil. Soc., 1848, 7, pp. 97112.
    17. 17)
      • 11. Schweitzer, G., Maslen, H.: ‘Magnetic bearings, theory, design and application to rotating machinery’ (Springer, 2009).
    18. 18)
      • 19. Knoepfel, H.E.: ‘Magnetic fields: a comprehensive theoretical treatise for practical use’ (Wiley-VCH, 2000).
    19. 19)
      • 17. Filatov, A.V.: ‘Null-E magnetic bearings’. PhD thesis, University of Virginia, 2002.
    20. 20)
      • 16. Basore, P.A.: ‘Passive stabilization on flywheel magnetic bearings’. MSc thesis, Massachusetts Institute of Technology (USA), 1980.
    21. 21)
      • 21. Lubin, T., Mezani, S., Rezzoug, A.: ‘2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots’, IEEE Trans. Magn., 2011, 47, (2), pp. 479492.
    22. 22)
      • 18. Cheng, D.K.: ‘Field and wave electromagnetics’ (Addison-Wesley, Reading, MA, 1983).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0308
Loading

Related content

content/journals/10.1049/iet-epa.2017.0308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address