http://iet.metastore.ingenta.com
1887

Proposal of self-excited wound-field magnetic-modulated dual-axis motor for hybrid electric vehicle applications

Proposal of self-excited wound-field magnetic-modulated dual-axis motor for hybrid electric vehicle applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Electric Power Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a permanent-magnet (PM)-free magnetic-modulated motor where the magnetic flux variation in a differential frequency between the armature fundamental rotating magnetic field frequency and the rotor rotation speed frequency is effectively utilised for the field magnetisation instead of PMs. The operation principle of the self-excitation with a diode rectifier circuit on the rotor is discussed. Magnetic circuit design and structural design of downsized prototype machine are performed for the purpose of experimental verifications of self-excitation. In addition, the preliminary experimental test results are demonstrated with prototype machine. Consequently, it is confirmed that the proposed PM-free magnetic-modulated motor can automatically obtain the field magnetisation power by utilising differential frequency which is inevitably generated by magnetic-modulation technique.

References

    1. 1)
      • 1. ‘United States Environmental Protection Agency (EPA) accessed on 24 August 2015’, http://www2.epa.gov/science-and-technology/sustainable-practices-science.
    2. 2)
      • 2. Momoh, O.D., Omoigui, M.O.: ‘An overview of hybrid electric vehicle technology’. IEEE Vehicle Power and Propulsion Conf. 2009 (VPPC'09), September 2009, pp. 12861292.
    3. 3)
      • 3. Frieske, B., Kloetzke, M., Mauser, F.: ‘Trends in vehicle concept and key technology development for hybrid and battery electric vehicles’. 27th Int. Electric Vehicle Symp. and Exhibition 2013 (EVS 27), November 2013, pp. 112.
    4. 4)
      • 4. Costa, A.D., Kim, N., Berr, F.L., et al: ‘Fuel consumption potential of different plug-in hybrid vehicle architectures in the European and American contexts’. 26th Int. Electric Vehicle Symp. and Exhibition 2012 (EVS 26), Los Angeles, United States, 2012.
    5. 5)
      • 5. Sato, Y., Ishikawa, S., Okubo, T., et al: ‘Development of high response motor and inverter system for the Nissan LEAF electric’, SAE Technical Paper, 2011, No. 2011–01–0350.
    6. 6)
      • 6. ‘Chevrolet HP’, http://www.chevrolet.com/volt-electric-car.html.
    7. 7)
      • 7. Takeuchi, Y., Kato, H., Tago, M., et al: ‘Operating principle and control method of the magnetic modulated motor’. IEEJ Annual Meeting, 2013, No. 5–041, pp. 7374 (in Japanese).
    8. 8)
      • 8. Fukuoka, M., Nakamura, K., Kato, H., et al: ‘A consideration of the optimum configuration of flux-modulated type dual-axis motor’. IEEJ Technical Meeting, 2013, RM-13–141 (in Japanese).
    9. 9)
      • 9. Niguchi, N., Hirata, K.: ‘A novel magnetic-geared motor’, Jpn. Soc. Appl. Electromagn. Mach., 2013, 21, (2), pp. 110115 (in Japanese).
    10. 10)
      • 10. Faus, H.T.: ‘Magnet gearing’, U.S. Patent 2,243,555, 27 May 1941.
    11. 11)
      • 11. Atallah, K., Calverley, S., Howe, D.: ‘Design, analysis and realization of a high-performance magnetic gear’, IEEE Proc. Electr. Power Appl., 2004, 151, (2), pp. 135143.
    12. 12)
      • 12. Huang, C.C., Tsai, M.C., Dorrell, D.G., et al: ‘Development of a magnetic planetary gearbox’, IEEE Trans. Magn., 2008, 44, (3), pp. 403412.
    13. 13)
      • 13. Montague, R.G., Bingham, C.M., Atallah, K.: ‘Magnetic gear dynamics for servo control’. IEEE Proc. the 15th IEEE Mediterranean Electrotechnical Conf. (MELECON2010), 2010, pp. 11921197.
    14. 14)
      • 14. Atallah, K., Howe, D.: ‘A novel high-performance magnetic gear’, IEEE Trans. Magn., 2001, 37, (4), pp. 22842846.
    15. 15)
      • 15. Jian, L., Chau, K.T., Gong, Y., et al: ‘Comparison of coaxial magnetic gears with different topologies’, IEEE Trans. Magn., 2009, 45, (10), pp. 45264529.
    16. 16)
      • 16. Wang, L.L., Shen, J.X., Wang, Y., et al: ‘A novel magnetic-geared outer-rotor permanent-magnet brushless motor’. IEEE Proc. the 4th IET Conf. Power Electronics, Machines and Drives 2008 (PEMD2008), 2008, pp. 3336.
    17. 17)
      • 17. Wang, L.L., Shen, J.X., Luk, P.C.K., et al: ‘Development of a magnetic-geared permanent-magnet brushless motor’, IEEE Trans. Magn., 2009, 45, (10), pp. 45784581.
    18. 18)
      • 18. Jian, L., Chau, K.T., Jiang, J.Z.: ‘An integrated magnetic-geared permanent-magnet in wheel motor drive for electric vehicles’. IEEE Proc. Vehicle Power and Propulsion Conf. (VPPC), 2008, pp. 16.
    19. 19)
      • 19. Jian, L., Chau, K.T.: ‘Design and analysis of a magnetic-geared electric-continuously variable transmission system using finite element method’, Prog. Electromagn. Res., 2010, 7, pp. 4761.
    20. 20)
      • 20. Jian, L., Chau, K.T.: ‘Design and analysis of integrated Halbach-magnetic-geared permanent-magnet motor for electric vehicle’, J. Asian Electr. Veh., 2009, 7, pp. 12131219.
    21. 21)
      • 21. Wang, J., Atallah, K., Calverley, S.D.: ‘A magnetic continuously variable transmission device’, IEEE Trans. Magn., 2011, 47, (10), pp. 28152818.
    22. 22)
      • 22. Atallah, K., Wang, J., Calverley, S.D., et al: ‘Design and operation of a magnetic continuously variable transmission’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 12881295.
    23. 23)
      • 23. Black, D.T., Calverley, S.D., Birchall, J.G.: ‘The delivery of magnetic powersplit technology’. JSAE Annual Congress, 2016, No. 20165062, pp. 326333.
    24. 24)
      • 24. Fukuoka, M., Nakamura, K., Kato, H., et al: ‘A novel flux-modulated type dual-axis motor for hybrid electric vehicles’, IEEE Trans. Magn., 2014, 50, (11), p. 8202804.
    25. 25)
      • 25. Tonari, T., Kato, H., Matsui, H.: ‘Study on iron loss of flux modulated type dual-axis motor’. IEEJ Technical Meeting, 2013, RM-13-142 (in Japanese).
    26. 26)
      • 26. Fukuoka, M., Nakamura, K., Ichinokura, O.: ‘Experimental test and efficiency improvement of surface permanent magnet magnetic gear’, IEEJ J. Ind. Appl., 2014, 3, (1), pp. 6267.
    27. 27)
      • 27. Husain, M., Hirata, K., Niguchi, N.: ‘Design, optimization, and realization of salient-pole electromagnetic gear for variable-transmission applications’, IEEJ J. Ind. Appl., 2013, 2, (1), pp. 8797.
    28. 28)
      • 28. Nonaka, S.: ‘The self-Excited type single-phase synchronous motor’, IEEJ J. Trans. Ind. Appl., 1958, 78, (842), pp. 14301438 (in Japanese).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0285
Loading

Related content

content/journals/10.1049/iet-epa.2017.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address