access icon free Proposal of self-excited wound-field magnetic-modulated dual-axis motor for hybrid electric vehicle applications

This study proposes a permanent-magnet (PM)-free magnetic-modulated motor where the magnetic flux variation in a differential frequency between the armature fundamental rotating magnetic field frequency and the rotor rotation speed frequency is effectively utilised for the field magnetisation instead of PMs. The operation principle of the self-excitation with a diode rectifier circuit on the rotor is discussed. Magnetic circuit design and structural design of downsized prototype machine are performed for the purpose of experimental verifications of self-excitation. In addition, the preliminary experimental test results are demonstrated with prototype machine. Consequently, it is confirmed that the proposed PM-free magnetic-modulated motor can automatically obtain the field magnetisation power by utilising differential frequency which is inevitably generated by magnetic-modulation technique.

Inspec keywords: rotors; permanent magnet motors; magnetic flux; hybrid electric vehicles; magnetic circuits; magnetic fields; magnetisation

Other keywords: operation principle; magnetic flux variation; armature fundamental rotating magnetic field frequency; structural design; PM motor; self-excitation; permanent-magnet motor; magnetic circuit design; differential frequency; field magnetisation power; hybrid electric vehicle applications; rotor rotation speed frequency; free magnetic-modulated motor; diode rectifier circuit; self-excited wound-field magnetic-modulated dual-axis motor; downsized prototype machine

Subjects: Transportation; Magnetic materials; d.c. machines; Other electromagnetic device applications; Magnetostatics; a.c. machines

References

    1. 1)
      • 18. Jian, L., Chau, K.T., Jiang, J.Z.: ‘An integrated magnetic-geared permanent-magnet in wheel motor drive for electric vehicles’. IEEE Proc. Vehicle Power and Propulsion Conf. (VPPC), 2008, pp. 16.
    2. 2)
      • 10. Faus, H.T.: ‘Magnet gearing’, U.S. Patent 2,243,555, 27 May 1941.
    3. 3)
      • 8. Fukuoka, M., Nakamura, K., Kato, H., et al: ‘A consideration of the optimum configuration of flux-modulated type dual-axis motor’. IEEJ Technical Meeting, 2013, RM-13–141 (in Japanese).
    4. 4)
      • 26. Fukuoka, M., Nakamura, K., Ichinokura, O.: ‘Experimental test and efficiency improvement of surface permanent magnet magnetic gear’, IEEJ J. Ind. Appl., 2014, 3, (1), pp. 6267.
    5. 5)
      • 23. Black, D.T., Calverley, S.D., Birchall, J.G.: ‘The delivery of magnetic powersplit technology’. JSAE Annual Congress, 2016, No. 20165062, pp. 326333.
    6. 6)
      • 21. Wang, J., Atallah, K., Calverley, S.D.: ‘A magnetic continuously variable transmission device’, IEEE Trans. Magn., 2011, 47, (10), pp. 28152818.
    7. 7)
      • 22. Atallah, K., Wang, J., Calverley, S.D., et al: ‘Design and operation of a magnetic continuously variable transmission’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 12881295.
    8. 8)
      • 27. Husain, M., Hirata, K., Niguchi, N.: ‘Design, optimization, and realization of salient-pole electromagnetic gear for variable-transmission applications’, IEEJ J. Ind. Appl., 2013, 2, (1), pp. 8797.
    9. 9)
      • 19. Jian, L., Chau, K.T.: ‘Design and analysis of a magnetic-geared electric-continuously variable transmission system using finite element method’, Prog. Electromagn. Res., 2010, 7, pp. 4761.
    10. 10)
      • 25. Tonari, T., Kato, H., Matsui, H.: ‘Study on iron loss of flux modulated type dual-axis motor’. IEEJ Technical Meeting, 2013, RM-13-142 (in Japanese).
    11. 11)
      • 11. Atallah, K., Calverley, S., Howe, D.: ‘Design, analysis and realization of a high-performance magnetic gear’, IEEE Proc. Electr. Power Appl., 2004, 151, (2), pp. 135143.
    12. 12)
      • 9. Niguchi, N., Hirata, K.: ‘A novel magnetic-geared motor’, Jpn. Soc. Appl. Electromagn. Mach., 2013, 21, (2), pp. 110115 (in Japanese).
    13. 13)
      • 6. ‘Chevrolet HP’, http://www.chevrolet.com/volt-electric-car.html.
    14. 14)
      • 1. ‘United States Environmental Protection Agency (EPA) accessed on 24 August 2015’, http://www2.epa.gov/science-and-technology/sustainable-practices-science.
    15. 15)
      • 15. Jian, L., Chau, K.T., Gong, Y., et al: ‘Comparison of coaxial magnetic gears with different topologies’, IEEE Trans. Magn., 2009, 45, (10), pp. 45264529.
    16. 16)
      • 3. Frieske, B., Kloetzke, M., Mauser, F.: ‘Trends in vehicle concept and key technology development for hybrid and battery electric vehicles’. 27th Int. Electric Vehicle Symp. and Exhibition 2013 (EVS 27), November 2013, pp. 112.
    17. 17)
      • 17. Wang, L.L., Shen, J.X., Luk, P.C.K., et al: ‘Development of a magnetic-geared permanent-magnet brushless motor’, IEEE Trans. Magn., 2009, 45, (10), pp. 45784581.
    18. 18)
      • 14. Atallah, K., Howe, D.: ‘A novel high-performance magnetic gear’, IEEE Trans. Magn., 2001, 37, (4), pp. 22842846.
    19. 19)
      • 13. Montague, R.G., Bingham, C.M., Atallah, K.: ‘Magnetic gear dynamics for servo control’. IEEE Proc. the 15th IEEE Mediterranean Electrotechnical Conf. (MELECON2010), 2010, pp. 11921197.
    20. 20)
      • 20. Jian, L., Chau, K.T.: ‘Design and analysis of integrated Halbach-magnetic-geared permanent-magnet motor for electric vehicle’, J. Asian Electr. Veh., 2009, 7, pp. 12131219.
    21. 21)
      • 5. Sato, Y., Ishikawa, S., Okubo, T., et al: ‘Development of high response motor and inverter system for the Nissan LEAF electric’, SAE Technical Paper, 2011, No. 2011–01–0350.
    22. 22)
      • 4. Costa, A.D., Kim, N., Berr, F.L., et al: ‘Fuel consumption potential of different plug-in hybrid vehicle architectures in the European and American contexts’. 26th Int. Electric Vehicle Symp. and Exhibition 2012 (EVS 26), Los Angeles, United States, 2012.
    23. 23)
      • 16. Wang, L.L., Shen, J.X., Wang, Y., et al: ‘A novel magnetic-geared outer-rotor permanent-magnet brushless motor’. IEEE Proc. the 4th IET Conf. Power Electronics, Machines and Drives 2008 (PEMD2008), 2008, pp. 3336.
    24. 24)
      • 24. Fukuoka, M., Nakamura, K., Kato, H., et al: ‘A novel flux-modulated type dual-axis motor for hybrid electric vehicles’, IEEE Trans. Magn., 2014, 50, (11), p. 8202804.
    25. 25)
      • 2. Momoh, O.D., Omoigui, M.O.: ‘An overview of hybrid electric vehicle technology’. IEEE Vehicle Power and Propulsion Conf. 2009 (VPPC'09), September 2009, pp. 12861292.
    26. 26)
      • 28. Nonaka, S.: ‘The self-Excited type single-phase synchronous motor’, IEEJ J. Trans. Ind. Appl., 1958, 78, (842), pp. 14301438 (in Japanese).
    27. 27)
      • 12. Huang, C.C., Tsai, M.C., Dorrell, D.G., et al: ‘Development of a magnetic planetary gearbox’, IEEE Trans. Magn., 2008, 44, (3), pp. 403412.
    28. 28)
      • 7. Takeuchi, Y., Kato, H., Tago, M., et al: ‘Operating principle and control method of the magnetic modulated motor’. IEEJ Annual Meeting, 2013, No. 5–041, pp. 7374 (in Japanese).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0285
Loading

Related content

content/journals/10.1049/iet-epa.2017.0285
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading