access icon free New design method for multi-stack disc-type hysteresis motors based on analytical calculations

Hysteresis motors are widely employed for a variety of high speed applications, thanks to their unique features. Usual design methods could not be used for these motors since the operation mechanism of hysteresis motors is also unique. However, an appropriately developed design method has not been provided by the few relevant published works. This study presents a new iterative design method, which is capable of being used for almost all hysteresis motor structures. Also, it is almost independent of the approach of obtaining the design equations. Multi-stack disc-type slotless structure has been selected as the case study, because of its interesting capabilities. Its design equations are derived by combining the fundamental laws of electromagnetism with the elliptical model of hysteresis loops. Some new techniques are introduced to increase the accuracy of these equations. A sample motor has been designed by applying the direct search optimisation to the proposed design method. The prototyped sample motor has been subjected to various tests. The measured operating characteristics show a great agreement with the design requirements.

Inspec keywords: electromagnetism; iterative methods; optimisation; search problems; hysteresis motors

Other keywords: elliptical model; multistack disc-type slotless structure; high speed application; iterative design method; direct search optimisation; multistack disc-type hysteresis motor; electromagnetism; hysteresis loop

Subjects: Synchronous machines; Combinatorial mathematics; Interpolation and function approximation (numerical analysis); Optimisation techniques

References

    1. 1)
      • 16. Horii, T., Yuge, N., Wakui, G.: ‘Analysis of a hysteresis motor on asynchronous speed using complex permeability’, IEEE Transl. J. Magn. Jpn., 1994, 9, (2), pp. 135142.
    2. 2)
      • 17. Kajita, S.: ‘Analysis of the characteristics of hysteresis motor taking into account higher harmonics of magnetomotive force’, Electr. Eng. Jpn., 1976, 96, (5), pp. 4048.
    3. 3)
      • 5. Roters, H.C.: ‘The hysteresis motor’, Electr. Eng., 1948, 67, (3), pp. 241245.
    4. 4)
      • 6. Ghanbari, T., Sanati-Moghadam, M., Darabi, A.: ‘Comparison between coreless and slotless kinds of dual rotor discs hysteresis motors’, IET Electr. Power Appl., 2016, 10, (2), pp. 133140.
    5. 5)
      • 13. Ishikawa, T., Kataoka, T.: ‘Basic analysis of disc-type hysteresis motors’, Electr. Eng. Jpn., 1981, 101, (6), pp. 5562.
    6. 6)
      • 29. Darabi, A., Tahanian, H., Amani, S., et al: ‘An experimental comparison of disc-type hysteresis motors with slotless magnetic stator core’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 46424652.
    7. 7)
      • 2. Anih, L.U., Obe, E.S., Agbachi, E.O.: ‘Analytic synthesis of a hysteresis motor’, Energy Convers. Manage., 2011, 52, (1), pp. 391396.
    8. 8)
      • 24. Rajagopal, K.R.: ‘Design of a compact hysteresis motor used in a gyroscope’, IEEE Trans. Magn., 2003, 39, (5), pp. 30133015.
    9. 9)
      • 12. Copeland, M.A., Slemon, G.R.: ‘An analysis of the hysteresis motor II – the circumferential-flux machine’, IEEE Trans. Power Appar. Syst., 1964, 83, (6), pp. 619625.
    10. 10)
      • 19. Kubota, T., Kurihara, K., Tamura, T.: ‘Characteristics of PWM inverter-driven hysteresis motor with short-duration overexcitation’. Proc. of Int. Conf. Electrical Machines and Systems (ICEMS), October 2010, pp. 14291433.
    11. 11)
      • 1. Steinmetz, C.P.: ‘The hysteresis motor’, in Wolcott, T. (Ed.): ‘Theory and calculation of alternating current phenomena’ (McGraw, 1900, 3rd edn.), pp. 293296.
    12. 12)
      • 22. Rahman, M.A., Qin, R.: ‘A permanent magnet hysteresis hybrid synchronous motor for electric vehicles’, IEEE Trans. Ind. Electron., 1997, 44, (1), pp. 4653.
    13. 13)
      • 23. Modarres, M., Byung-il, K.: ‘Rotor design to improve dynamic performance of axial flux hysteresis motors’, IET Electr. Power Appl., 2015, 9, (1), pp. 4449.
    14. 14)
      • 3. Liang, C., Ge, L.: ‘Complete parallelogram hysteresis model for electric machines’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 626632.
    15. 15)
      • 11. Gavril, S., Mor, A.: ‘An analysis of the hysteresis motor’, Electr. Mach. Power Syst., 1982, 7, (3), pp. 203214.
    16. 16)
      • 18. O'Kelly, D.: ‘Hysteresis motor with overexcitation and solid-state control’, Proc. Inst. Electr. Eng., 1978, 125, (4), pp. 288292.
    17. 17)
      • 4. Duval, P., Saulgeot, C., Raynaud, A.: ‘Turbomolecular pumps with hysteresis motor for nuclear physics accelerators’, Vacuum, 1986, 36, (5), pp. 281283.
    18. 18)
      • 9. Repetto, M., Uzunov, P.: ‘Analysis of hysteresis motor starting torque using finite element method and scalar static hysteresis model’, IEEE Trans. Magn., 2013, 49, (5), pp. 24052408.
    19. 19)
      • 30. Pyrhonen, J., Jokinen, T., Hrabovcova, V.: ‘Design of rotating electrical machines’ (Wiley, 2014, 2nd edn.).
    20. 20)
      • 32. Cullity, B.D., Graham, C.D.: ‘Introduction to magnetic materials’ (Wiley-IEEE Press, 2008, 2nd edn.).
    21. 21)
      • 15. Jagiea, M., Bumby, J., Spooner, E.: ‘Time-domain and frequency-domain finite element models of a solid-rotor induction/hysteresis motor’, IET Electr. Power Appl., 2010, 4, (3), pp. 185197.
    22. 22)
      • 8. Hong, S.K., Kim, H.K., Kim, H.S., et al: ‘Torque calculation of hysteresis motor using vector hysteresis’, IEEE Trans. Magn., 2000, 36, (4), pp. 19321935.
    23. 23)
      • 20. Clurman, S.: ‘On hunting in hysteresis motors and new damping techniques’, IEEE Trans. Magn., 1971, 7, (3), pp. 512517.
    24. 24)
      • 26. Jagiela, M., Garbiec, T., Kowol, M.: ‘Design of high-speed hybrid hysteresis motor rotor using finite element model and decision process’, IEEE Trans. Magn., 2014, 50, (2), pp. 861864.
    25. 25)
      • 21. Wakui, G., Kurihara, K., Kubota, T.: ‘Radial flux type hysteresis motor with reaction torque − numerical analysis of hysteresis motor using finite element method’, IEEE Trans. Magn., 1987, 23, (5), pp. 38453852.
    26. 26)
      • 7. Teare, B.R.: ‘Theory of hysteresis motor torque’, Electr. Eng., 1940, 59, (12), pp. 907912.
    27. 27)
      • 28. Darabi, A., Ghanbari, T., Sanati-Moghadam, M.: ‘Slotless axial flux hysteresis motor, modelling and performance calculation’, IET Electr. Power Appl., 2009, 3, (5), pp. 491501.
    28. 28)
      • 10. Nasiri-Zarandi, R., Mirsalim, M.: ‘Analysis and torque calculation of an axial flux hysteresis motor based on hyperbolic model of hysteresis loop in Cartesian coordinates’, IEEE Trans. Magn., 2015, 51, (7), article sequence number 8105710.
    29. 29)
      • 31. Gieras, J.F., Wang, R.J., Kamper, M.J.: ‘Axial flux permanent magnet brushless machines’ (Springer, 2008, 2nd edn.).
    30. 30)
      • 27. Parvin, F., Nasiri-Zarandi, R., Mirsalim, M., et al: ‘General design algorithm for a hybrid hysteresis motor based on mathematical modeling’. Proc. of Annual Conf. of the IEEE Industrial Electronics Society (IECON), October 2016, pp. 2326.
    31. 31)
      • 25. Darabi, A., Sadeghi, M., Hassannia, A.: ‘Design optimization of multistack coreless disk-type hysteresis motor’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 10811087.
    32. 32)
      • 14. Rahman, M.A., Osheiba, A.M.: ‘Dynamic performance prediction of polyphase hysteresis motors’, IEEE Trans. Ind. Appl., 1990, 26, (6), pp. 10261033.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0273
Loading

Related content

content/journals/10.1049/iet-epa.2017.0273
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading