access icon free PFC-based half-bridge dual-output converter-fed four-phase SRM drive

This study proposes a power factor correction (PFC)-based half-bridge dual-output converter-fed switched reluctance motor (SRM) drive for home appliances. The proposed converter provides two equal output voltages to feed a mid-point converter of a four-phase SRM. An adjustable speed drive is proposed here such that the speed control is obtained by regulating converter output voltage. The converter is operated in discontinuous conduction mode to obtain inherent PFC at supply side. The sensors requirement is reduced by selecting a voltage follower approach. The performance of proposed drive is evaluated for steady-sate and dynamic conditions. The input current total harmonic distortion is reduced below 5% as per an IEC standard.

Inspec keywords: reluctance motor drives; angular velocity control; power factor correction; voltage control; variable speed drives; domestic appliances; machine control

Other keywords: adjustable speed drive; four-phase SRM; switched reluctance motor drive; dynamic conditions; speed control; voltage follower approach; steady-sate conditions; input current total harmonic distortion; PFC; discontinuous conduction mode; home appliances; converter output voltage regulation; mid-point converter; sensors requirement; IEC standard; power factor correction; half-bridge dual-output converter-fed four-phase SRM drive

Subjects: Control of electric power systems; Domestic appliances; Synchronous machines; Drives; Velocity, acceleration and rotation control; Power convertors and power supplies to apparatus; Voltage control

References

    1. 1)
      • 11. Emadi, A.: ‘Energy-efficient electric motors, revised and expanded’ (CRC Press, 2004).
    2. 2)
      • 10. Colby, R.S., Mottier, F.M., Miller, T.J.E.: ‘Vibration modes and acoustic noise in a four-phase switched reluctance motor’, IEEE Trans Ind. Appl., 1996, 32, (6), pp. 13571364.
    3. 3)
      • 9. Li, Q., Yao, K., Song, J., et al: ‘A series diode method of suppressing parasitic oscillation for boost PFC converter operated in discontinuous conduction mode’, IEEE Trans. Power Electron., 33, (1), pp. 407424.
    4. 4)
      • 8. Gusseme, K.D., Van de Sype, D.M., Van den Bossche, A.P.M., et al: ‘Input-current distortion of CCM boost PFC converters operated in DCM’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 858865.
    5. 5)
      • 2. Friedli, T., Hartmann, M., Kolar, J.W.: ‘The essence of three-phase PFC rectifier systems – part II’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 543560.
    6. 6)
      • 3. Singh, B., Singh, S.: ‘Single-phase power factor controller topologies for permanent magnet brushless DC motor drives’, IET Power Electron., 2010, 3, (2), pp. 147175.
    7. 7)
      • 18. Narula, S., Singh, B., Bhuvaneshwari, G.: ‘Interleaved CSC converter-based power factor corrected switched mode power supply for arc welding’, IET Power Electron., 2016, 9, (12), pp. 24042415.
    8. 8)
      • 4. Limits for harmonic current emissions (equipment input current ≤ 16 A per phase), International Standard IEC 61000-3-2, 2000.
    9. 9)
      • 16. Sebastian, J., Cobos, J.A., Gil, P., et al: ‘The determination of the boundaries between continuous and discontinuous conduction modes in PWM DC-to-DC converters used as power factor preregulators’. 23nd Annual IEEE Power Electronics Specialists Conf., PESC ‘92, Toledo, pp. 10611070.
    10. 10)
      • 6. Ranganathan, G., Umanand, L.: ‘Power factor improvement using DCM Cuk converter with coupled inductor’, IEE Proc., Electr. Power Appl., 1999, 146, (2), pp. 231236.
    11. 11)
      • 14. Michaelides, A.M., Pollock, C.: ‘Modelling and design of switched reluctance motors with two phases simultaneously excited’, IEE Proc., Electr. Power Appl., 1996, 143, (5), pp. 361370.
    12. 12)
      • 15. Ahn, J.W., Oh, S.G., Moon, J.W., et al: ‘A three-phase switched reluctance motor with two-phase excitation’, IEEE Trans. Ind. Appl., 1999, 35, (5), pp. 10671075.
    13. 13)
      • 7. Wu, X., Yang, J., Zhang, J., et al: ‘Variable on-time (VOT)-controlled critical conduction mode buck PFC converter for high-input AC/DC HB-LED lighting applications’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 45304539.
    14. 14)
      • 5. Chen, D.S., Lai, J.S.: ‘A study of power correction boost converter operating at CCM–DCM mode’. Proc. of IEEE, Southeastcon ‘93, pp. 613.
    15. 15)
      • 1. Kolar, J.W., Friedli, T.: ‘The essence of three-phase PFC rectifier systems – part I’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 176198.
    16. 16)
      • 12. Miller, T.J.E. (Ed.): ‘Electronics control of switch reluctance machines’ (Elsevier Ltd., Newnes, Oxford), 2001.
    17. 17)
      • 17. Bist, V., Singh, B.: ‘Reduced sensor configuration of brushless DC motor drive using a power factor correction-based modified-zeta converter’, IET Power Electron., 2014, 7, (9), pp. 23222335.
    18. 18)
      • 19. Bist, V., Singh, B.: ‘An adjustable-speed PFC bridgeless buck–boost converter-fed BLDC motor drive’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 26652677.
    19. 19)
      • 13. Husain, I.: ‘Minimization of torque ripple in SRM drives’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 2839.
    20. 20)
      • 21. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘Power corrected bridgeless converter based switched mode power supply factor’, IET Power Electron., 2016, 9, (8), pp. 16841693.
    21. 21)
      • 20. Singh, S., Singh, B., Bhuvaneswari, G., et al: ‘Improved power quality switched-mode power supply using buck–boost converter’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 51945202.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-epa.2017.0259
Loading

Related content

content/journals/10.1049/iet-epa.2017.0259
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading